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In this presentation...

» Introduction
> Steel off-gases — Applications
» Pressure Swing Adsorption (PSA) — for carbon rich off-gas streams

» Case studies
= CO recovery from PSA
= H, from electrolysis

= Make-up syngas for Direct Reduction Process (DRP)

» Conclusions
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*f /E’/STEP Introduction | Steel Industry & its emissions
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Introduction | Steel Gases

Typical steel off-gases composition

BF-BOF route DRI-EAF route
Composition Blast Furnace Basic Oxygen Coke Oven ST
(vol. %) Gas Furnace Gas Gas Off-gas
(BFG) (BOFG) (COG)*

Cco 24 54 4

co, 20 ]
CHy = 25

HZ

H,0

NZ

Source: Collis (2021) Source: Zugliano (2013) Source: Lotfy (2015)

* Publication from previous edition of H, for Green Steel conference:
Ramani, B., van der Stel, J., Jagers, G., & Buijs, W. (2023). Hydrogen production from coke oven gas using pressure swing adsorption process. Matériaux & Techniques, 111, 205.
https://doi.org/10.1051/mattech/2023027




- Steel off-gases | Applications

Heating
Current applications

Electricity

Valorization of carbon rich off-gas streams (CO,/CO)

CCU Recovery & Reuse of CO internally
Hydrogenation of CO,/CO to C1-chemicals (CH,, CH;OH) Syngas makeup for DRP reducing gas
— development of dedicated infrastructure — enabler of green H, use in ironmaking process
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== Pressure Swing Adsorption (PSA)

After saturation
Packed

Packed
Adsorbent

Adsorbent

@ 5 Column
O Pressure

N
Co

> Selective separation of gas mixtures (CO, - CO - N, - H,)

> Efficient separation of CO from N,
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PSA | Carbon Dioxide Capture Projects

Arcelor Mittal, Gent Valero Refinery, Port Arthur, Texas

Distillation
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Source: Steelanol (2007) Source: Preston (2018)

Capacity : 320 kton CO,/y Capacity : 1 Mt CO,/y
Feed stream CO, = 20-25 vol. % (BFG+BOFG) Feed stream CO, = 15 vol. % (SMR)
Product stream CO, > 99 vol. % (EtOH) Product stream CO, > 97 vol. % (EOR)




/E‘/Sf:,; PSA | Carbon Monoxide Capture Projects

European Steel Technology Platform

Kobe Steel, Japan PKU Pioneer, China

TREE —____: ’.‘:
Source: Xie et al. (2007)

Source: Kasuya and Téuji (1991) |

Capacity: 20 kton CO/y Capacity: 200 kton CO/y
Feed stream CO = 68 vol. % (LDG) Feed stream CO = 30 vol. % (BFG)
Product stream CO > 99 vol. % (syngas) Product stream CO > 99 vol. % (syngas)




{/S:“: PSA | Reference case for model | ASCOA-3 (JFE Steel)

European Steel Technology Platform

Pretreatment Unit — , ———

“g——a -

Capacity: 3-5 ton CO,/day
CO, Recovery > 80%
CO, Purity > 90%

> Used as reference to validate
Aspen Adsorption simulation

CO2 PSA Unit CO PSA Unit

Recreated from: Saima et al.(2013)
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L PSA | Process Performance

Working Capacity Recovery [%] Purity [%] lllustration
'_'|_‘ 5_-___________--------___:___ ::: ﬁ‘ ‘‘‘‘‘‘ 6 X * X *
ICh .e-e'@' G-I G °
= 212 099'990-60 i Waste
3.8 3?" ' Total G (x *°) t(y ‘)
§°1 , Productivity [ton,/h]
g L. Warking Pressure i Column
i *
o] I 0 —A X ° Pressure

0 25 50 75 160k 125 150 175 200 . \ PrOdUCt
Pressure / [kPa] Cycle Tlme ° >

Selectivity Energy Consumption [kWh/ton,] :
¢ Working Capacity of A Energy to operate
A/B Working Capacity of B

< @




**** e
/’__'
"+, ESTE

European Steel Technology Platform

PSA | Adsorbent Selection & Isotherm Fitting

Materials from Experimental data from literature

(CuCl-Zeolite)
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Illustration

Outlet concentration
IS measured as
breakthrough curve

cfco [-]

PSA | Validation | Breakthrough simulations

Breakthrough curves for CO, & CO adsorption systems
(Aspen simulation vs experimental literature data)

@« Zeolite 13X (CO,)

Exp.CO 1 o Exp.cHs —-- Sim.CH:

Exp.CO3 O Exp.CO —-- Sim.CO

Exp.Nz 5 O Exp.CO;z —-= S5im.CO; ,"\
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O Exp.Nz —-- Sim.N3 -"lo%

T T T T T T T T T T
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Exp data source: Park (2021) Exp data source: Zhou (2017)
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PSA | Validation | Cycle simulations

. ESTE
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PSA | Optimized case

Reference case (ASCOA-3)

Target performance

Purity Recovery
295% X

CO, Column CO Column

Process Performance Units Value Process Performance Units Value
CO, Recovery [%] 89.2 CO Recovery [%] 85.2
CO, Purity [%] 95.4 CO Purity [%] 94.9
CO, Productivity [tCO,/day] 5.7 CO Productivity [tCO/day] 3.3
Annual Productivity [ktCO,/y] 1.9 Annual Productivity [ktCO/y] 1.1
Specific Energy [KWh/tCO,] 88.7 Specific Energy [KWh/tCO] 164.4
Consumption Consumption
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PSA | Preliminary Economic Analysis

CO, capture
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Current Scenario | BF-BOF route

(internal) scrap
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Future Scenario | Transition BF-BOF — DRI-EAF route

(internal) scrap

CO,+CO
Blast
Furnace PSA
Pig Iron Basic Gas processing
* M Oxygen —» CO,+CO
Sinter + ! ton/y Furnace
Pellet i
plants |
i co co,
i (to DRI plant)
: Steel
DRI T Co,
Natural gas I plant EEEEEEEEN cmoyal
. Syngas
Make-up reducmg gas (recycle from top gas)
= Carbon monoxide (CO) PSA — CO (to DRI plant)
* Hydrogen (H,) DRI Gas processing
~2.5 Mton/y B a[3e1ale — CO,+CO > CO,
Scrap > Arc
Natural gas j Furnace Steel

Carbon/Bio-char
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S Case studies

P N

> Scenario analysis for CO-rich streams:
= BOF, EAF, mix of BOF+EAF off-gas streams
= Scaling-up PSA = 2 kton/year — 100kton/year productivity
= 1-step PSA (direct CO capture) = CO purity = 90% Natural gas (CHy) o P88
= 2-steps PSA (CO, capture followed by CO capture) = CO purity > 95% Make-up syngas

= Carbon monoxide (CO)
= Hydrogen (H,)

> H, requirement for make-up syngas: Natural gas (CH,)
= Electrolytic H, from water electrolysis using renewable electricity
= How much green H, can be used (to replace fossil-based H, or CH, in the reducing gas)?

Cooling gas

* No changes to the composition of the reducing (and cooling) gas

 Carburization of DRI in the range of 2 to 4 wt. % carbon
« Minimum adjustment to plant configuration and operation
« Reduce CO, emission by reusing CO recovered from off-gases = reduce natural gas consumption




Electrolysis —H,

= H, requirement for DRI plant:

For 2.5 Mton/year DRI production using 100% H,, ~=
H, ~ 140 kton H,/year (56 kg H,/ton DRI)

~ 800 MW PEM water electrolyzer (20 kg H,/MWH)

T{ﬁ’h ~ 1600 MW off-shore wind farm (capacity factor = 0.5)

= Possible Integrations: Heat recovery from steel off-gases, O, from electrolysis for BOF, EAF

= Economics for PEM electrolyzer, and offshore wind turbines (cost of H, ~ 5 to 10 €/kg!)
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Make-up syngas for Direct Reduction Process

For 2.5 Mton/year DRI plant,
= Add CO (recovered by PSA) and H, (electrolysis) for syngas make-up

= Match amount of H, to amount of CO (or the other way around)

H, 66.3 vol. % 94 kton/year
co 16.2 vol. % 329 kton/year
H,:CO 4 : 1 (mol. basis) 1:3.5 (wt. basis)

Estimations based on Zugliano (2013) for 1.76 Mton DRI/year at 2.3 wt. % C
» Sources of CO

= Basic Oxygen Furnace (BOF) for 3 Mton HM/year = 100 kton CO/year
= Electric Arc Furnace (EAF) for 2.5 Mton DRI/year = 50-150 kton CO/year
= CO from PSA = ~120-200 kton CO/year (@80% CO recovery)

> Largest PEM electrolyzer — 100 MW
= Electrolytic H, = 17 kton H,/year

= H,;CO=1:3.5 = 60kton CO/year (~40% of available CO from PSA)

» 15-20% reduction in natural gas consumption possible !!

(reduction up to 50% possible — subject to electrolytic H2 development !)
20
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S Conclusions

> Valorisation of steel off-gases during transition to BF-BOF — DRI-EAF route
» Combine PSA for CO recovery from steel off-gases with electrolytic H, for syngas make-up
> Decrease in steel off-gas availability (& lower heating value) — electrification is an option

Advantages:

» Reduce CO, emission by reusing CO in make-up syngas for DRP (+ CO, capture)
» Enabler of green H, use in ironmaking process
» Minimum adjustment to plant configuration and operation

» Reduction in natural gas consumption = 15-20%
(reduction up to 50% possible — subject to electrolytic H, development !)
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