Gas processing at integrated steelworks

- Syngas makeup and CO valorization

<u>Balan Ramani</u>, Peter van den Broeke, Abraham Takarianto, Thijs Vlugt, Jan van der Stel

29 October 2024

ESTEP 2024 Annual Event

- Introduction
- Steel off-gases Applications
- Pressure Swing Adsorption (PSA) for carbon rich off-gas streams
- Case studies
 - CO recovery from PSA
 - H₂ from electrolysis
 - Make-up syngas for Direct Reduction Process (DRP)
- Conclusions

Introduction | Steel Industry & its emissions

BOFG

Steel

Steel

COG

BFG

CO₂ ~8% of global emissions Source: IEA (2023)

emissions

by 2050

2.8 Gt

 $\mathbf{n} \mathbf{n} \mathbf{n}$ $\mathbf{n} \mathbf{n}$ Sinter/Pellet Blast **Basic Oxygen** Iron Furnace (BF) Plant Furnace (BOF) ore **DRI-EAF** Route NG, C NG-CH₄, H₂, CO off-gas off-da $\cap \cap$ Pellet Direct Electric Arc Iron Plant Reduction (DR) Furnace (EAF) ore

Coal

BF-BOF Route

Coke Oven

Typical steel off-gases composition

	BF-BOF route			DRI-EAF route	
Composition (vol. %)	Blast Furnace Gas (BFG)	Basic Oxygen Furnace Gas (BOFG)	Coke Oven Gas (COG)*	DRI Off-gas	EAF Off-gas
СО	24	54	4	14	28
CO ₂	22	20	1	7	7
C _x H _y	-	-	25	6	0
H ₂	4	3	60	43	0
H ₂ O	4	4	4	29	3
N ₂	46	19	6	1	62
Source: Collis (2021)				Source: Zugliano (2013)	Source: Lotfy (2015)

* Publication from previous edition of H₂ for Green Steel conference:

Ramani, B., van der Stel, J., Jagers, G., & Buijs, W. (2023). Hydrogen production from coke oven gas using pressure swing adsorption process. Matériaux & Techniques, 111, 205. https://doi.org/10.1051/mattech/2023027

Pressure Swing Adsorption (PSA)

- > Selective separation of gas mixtures ($CO_2 CO N_2 H_2$)
- \succ Efficient separation of CO from N₂

PSA | Carbon Dioxide Capture Projects

Arcelor Mittal, Gent

Source: Steelanol (2007)

Capacity : 320 kton CO₂/y

Feed stream $CO_2 \approx 20-25$ vol. % (BFG+BOFG)

Product stream $CO_2 > 99$ vol. % (EtOH)

Valero Refinery, Port Arthur, Texas

Source: Preston (2018)

Capacity : 1 Mt CO_2/y

Feed stream CO₂ ≈ 15 vol. % (SMR)

Product stream $CO_2 > 97$ vol. % (EOR)

PSA | Carbon Monoxide Capture Projects

Kobe Steel, Japan

Source: Kasuya and Tsuji (1991)

Capacity: 20 kton CO/y

Feed stream CO ≈ 68 vol. % (LDG)

Product stream CO > 99 vol. % (syngas)

PKU Pioneer, China

Source: Xie et al. (2007)

Capacity: 200 kton CO/y

Feed stream CO ≈ 30 vol. % (BFG)

Product stream CO > 99 vol. % (syngas)

PSA | Reference case for model | ASCOA-3 (JFE Steel)

Recreated from: Saima et al.(2013)

PSA | Process Performance

PSA | Adsorbent Selection & Isotherm Fitting

Pressure / [kPa]

PSA | Validation | Breakthrough simulations

Illustration

Outlet concentration is measured as breakthrough curve Breakthrough curves for CO₂ & CO adsorption systems (Aspen simulation vs experimental literature data)

Exp data source: Park (2021)

Exp data source: Zhou (2017)

PSA | Optimized case

Reference case (ASCOA-3)

PSA | Preliminary Economic Analysis

Equipment cost source: Towler and Sinnot (2021)

Current Scenario | BF-BOF route

Future Scenario | Transition BF-BOF – DRI-EAF route

Case studies

Scenario analysis for CO-rich streams:

- BOF, EAF, mix of BOF+EAF off-gas streams
- Scaling-up PSA \Rightarrow 2 kton/year \rightarrow 100kton/year productivity
- 1-step PSA (direct CO capture) \Rightarrow CO purity \approx 90%
- 2-steps PSA (CO₂ capture followed by CO capture) \Rightarrow CO purity > 95%

➢ H₂ requirement for make-up syngas:

- Electrolytic H₂ from water electrolysis using renewable electricity
- How much green H₂ can be used (to replace fossil-based H₂ or CH₄ in the reducing gas)?

Note:

- No changes to the composition of the reducing (and cooling) gas
- Carburization of DRI in the range of 2 to 4 wt. % carbon
- Minimum adjustment to plant configuration and operation
- Reduce CO_2 emission by reusing CO recovered from off-gases \Rightarrow reduce natural gas consumption

• H₂ requirement for DRI plant:

For 2.5 Mton/year DRI production using 100% H₂,

$$H_2 \sim 140$$
 kton H_2 /year (*56 kg H_2 /ton DRI*)

 \sim 800 MW PEM water electrolyzer (20 kg H₂/MWh)

1600 MW off-shore wind farm (*capacity factor = 0.5*)

- Possible Integrations: Heat recovery from steel off-gases, O₂ from electrolysis for BOF, EAF
- Economics for PEM electrolyzer, and offshore wind turbines (*cost of H*₂ ~ 5 to 10 \in /kg!)

For 2.5 Mton/year DRI plant,

- Add CO (recovered by PSA) and H₂ (electrolysis) for syngas make-up
- Match amount of H₂ to amount of CO (or the other way around)

H ₂	66.3 vol. %	94 kton/year	
СО	16.2 vol. %	329 kton/year	
H ₂ :CO	4 : 1 (mol. basis)	1 : 3.5 (wt. basis)	

Estimations based on Zugliano (2013) for 1.76 Mton DRI/year at 2.3 wt. % C

Sources of CO

- Basic Oxygen Furnace (BOF) for 3 Mton HM/year \Rightarrow 100 kton CO/year
- Electric Arc Furnace (EAF) for 2.5 Mton DRI/year \Rightarrow 50-150 kton CO/year
- CO from PSA $\Rightarrow \sim 120-200$ kton CO/year (@80% CO recovery)
- Largest PEM electrolyzer 100 MW
 - Electrolytic $H_2 \Rightarrow 17 \text{ kton } H_2/\text{year}$
 - $H_2:CO = 1: 3.5 \Rightarrow$ 60 kton CO/year (~40% of available CO from PSA)
- > 15-20% reduction in natural gas consumption possible !!

(reduction up to 50% possible – subject to electrolytic H2 development !)

- Valorisation of steel off-gases during transition to BF-BOF DRI-EAF route
- > Combine PSA for CO recovery from steel off-gases with electrolytic H_2 for syngas make-up
- > Decrease in steel off-gas availability (& lower heating value) electrification is an option

<u>Advantages</u>:

- > Reduce CO_2 emission by reusing CO in make-up syngas for DRP (+ CO_2 capture)
- > Enabler of green H_2 use in ironmaking process
- > Minimum adjustment to plant configuration and operation
- ➢ Reduction in natural gas consumption ⇒ 15-20% (reduction up to 50% possible – subject to electrolytic H₂ development !)

Thank you for the attention

<u>Contact</u>: dr. ir. Balan Ramani <b.ramani@tatasteeleurope.com>