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= Steel Production Impact

In 2023, around 126 million tons
of steel were produced in the EU.

1 ton of steel directly produces
about 1.5 tons of CO2

about 6% of European CO2
emissions come from this sector
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SMARTER advanced

develops
methodologies and tools to revamp and
optimize gas and steam networks in
steelworks, enhancing energy efficiency,
reducing CO2 emissions, and lowering
energy and management costs.

S The Smarter Project

Research Fund
for Coal & Steel
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= New scenarios

Simulation of future innovative scenarios:

Optimize the management and the structure of the steam and gas networks inside
iIntegrated steelworks in the light of the future developments of the steel production

CO,

reduction

Maximizing profit Minimizing environmental impact  Minimizing system stress
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S Problems

N\
‘ The POGs are produced intermittently
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Tl Solution
e

Data driven models

Optimization strategy
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= Control Scheme

INSTITUTE
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m@ Followed approach, Assumptions and New ldeas

s

- Enhance existing models, developing new units models, and consider the amount of carbon
dioxide captured with CCSU solutions, e.g., for methane and/or methanol synthesis (as next slide),
and produced/consumed by the system also in case of transitional scenarios (e.g., replacement of
BF with EAF and DR process)

- Test forecast algorithms to predict physical quantities

- Develop Key Performance indicators that directly quantifies the control performances :

Nsimulation

KPI€ — /3 Z (Q’SDld(k) — qurchased(k)) KPItime — kﬂ#time + kggtime + 'If'::c-mptma:sc
k=1

comp

Nsimu]a.tion

Nsimulation— 1

KPIn= Y Calak+1) —q®)|+> elortk+1) =5 k)))  BPlco, =0 > dtoy (k) = deo, (k)

k=1 i

k=1
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- Followed approach, Assumptions and New ldeas

INSTITUTE

It is possible to valorize POG by converting them into chemicals that can be stored or sold

Hvd Methanol

ydrogen ’ CO + 2H, » CH;0H
POG: 1 8 b 3H, - CH;0H + H,0
« LI

. BOFG Methane CO + 3H, - CH, + H,0
. COG + 4H, — CH, + 2H,0

Nsimula.tion
KPIco,=a % — Gco, (F)
kE=1




The CO2 produced in the power plant can be
calculated by using basic chemical transformations
related to combustion process

C,Hz0, + ((x n g _ '2") (Og + 3.77Ny) —>+ gHQO +3.77 (a + g _ ;’) N,

Nsimulation
KPlco,=a Y q%og(k)
k=1




- Followed approach, Assumptions and New Ideas

11l J
st (k1) = Ax(4) + Byu(k) + Bsd(0
/ (k) (,Zﬂ) + Duu(;i:) + Déa(k)

e Hyu(k) + Hyx(k) + h(k) < Hso(k)
— k K X(O = X0
T= 2 7 k) e (B) + lop(R) S0,
5 cZ

ke f{0.1....,N,—1}

o loco(k) = cTE, (k) — cTE (k)
® len’v(k) — _QCOQ(k) + qgog(k)
o I, (k) =4+Cri(k) + Cay, (k) + Cappr (k) + Cram (k) + cs"s(k)




Simulated Scenarios

» Standard Route

» Standard Route + Methane Reactor

- Standard Route + Methanol Reactor

* Replacement of 1 BF with EAF and externally purchased DRI

- Replacement of 1 BF with EAF and internally produced DRI, and
Methane Reactor is considered

- Replacement of 1 BF with EAF and Green energy is considered




Reference Scenario

Standard Route including 1 coke plant, 1 big
BF, 2 small BFs and 3 converters
Historical energy prices

Internal energy (heat, electricity, steam)
demands is always satisfied

POGs excess can only be
rerouted to PP and torches

Time changing production and
consumption
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External Electric Power

Reference Scenario Results
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m@ New Scenarios

Novel Route

Standard Route

POGs excess can be rerouted to

POGs excess can only be
y PP, torches and methane reactor

rerouted to PP and torches

Remark:

* Physical constraints are
always considered

* Internal energy demands are
always satisfied

* Used H, Is considered green

KPI Value
Money KPI %
otal KP1 CO, %
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ol Results

CO02 converted in EVTR CH, Output in Methane Reactor

I I I 1
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oo . New Scenarios

Novel Route

Standard Route

POGs can be rerouted to PP,

POGs can only be rerouted
torches and methanol reactor

to PP and torches

Remark:
« Physical constraints are Value
_ Money KPI % ~ +50,3% |

always considered

* Internal energy demands are
always satisfied

* Used H, Is considered green

_lotal KP1 COy 70 | =~ —4.6/ |
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MEOH Produced
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(o New Scenarios
Replace 1 small BF with EAF fed by scrap and externally purchased DRI

@Liquid slag

® Electrodes
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e Considerations and KPIs results

We have replaced 1 small blast furnace; we have used historical data and physical models to
calculate the energy requirements

2.344 " (MDRI
1IDRI M

Frap =

) +371.874  [kWh/ton]

and CO, emissions (direct and indirect) for the Electric Arc Furnace (EAF)

M
COEAY = 9.002 x ( — T}w ) +327.109  [kgCO,/ton]
scrap DRI

KPIs Results
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B New Scenarios

Replace 1 small BF with EAF fed by scrap and DRI internally produced + methane reactor

Ore and coke

@Roof

@) waiis
@Solid scrap
@Liquid melt
(B)solid shg
@Liqu'ui slag
@Electrodes
Gas phase
@Are

Hydrogen .

POG:

o Y

. BOFG Methane CO + 3H, — CHy + Hy0
. COG CO, + 4H, — CH, + 2H,0
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- Considerations and KPIs results

3
We can calculate the CH, demand in % by the shaft furnace
Mcp, = {-300.220}39;12 +175.677TR3;, — 130.886 Ry, 4+ 259.521, 0 < Ry, <1
CO, equivalent output from the whole DRI process in kg/tDRI .

GORI — {—474.2241?%, +30.721 Ry + 438.519, 0< Ry < 1

And energy consumed in kWh/tDRI. EPRl — 1125
Remark: KPlIs RESUItS
* Physical constraints are always considered
« Internal energy demands are always satisfied

« Used H, is considered green lotal KP1 CO, 7% | ~ —25.17
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o New Scenario

Replace 1 small BF with EAF and renewable energy is considered

@Roof
(2)walls
@So]id scrap
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e Considerations and KPIs results

400 450 500

Renewable Power

KPIs Results Money KPI % ~ —50.81%
Total KPI CO, % | =~ —19.52%
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2 Final scenario KPIs comparison

Value

KPI
Money KPI % ~ +50, 3%

_lotal KP1 CO-> /o | ~ —4 0/ |

Money KPI % ~ 4+37.1%
| Total KP1 CO 70

Standard route + Methane Reactor

Standard route + Methanol Reactor

Money KP1 % | ~ 08540
. _Total KPI CO, % | ~ —28.
Tl Lo A =
1 small BF replaced with EAF and BF partially replace with EAF+ 1 small BF replaced with EAF and
externally purchased DRI Renewable energy :gterntally produced DRI + Methane
eactor

KP1
Money KPI % ~ —50.81%

Total KPI CO, %




Conclusions and future works

We can clearly see an environmental and an economic improvement when syntheses reactors are
used but It's crucial to remark economic feasibility heavily depends on the hydrogen production cost
[2].

It's important to recognize that, due to the complexity of the optimization system, it is highly sensitive to
changes. Variations in production, consumption, and price can result in significantly different outcomes.

These studies are still in progress, and further considerations needs to be done.

Nevertheless, they certainly offer valuable insights for guiding steelworks transitions towards
C-lean processes

Many additional scenarios can still be analyzed and compared with the baseline case, including
dynamic price fluctuations, disturbances in the production, introduction of storage possibilities for
chemicals produced by the reactors and introduction of Mixed-Integer Quadratic Programming
techniques.



TELECOMMUNICATIONS,
COMPUTER
ENGINEERING,

AND PHOTONICS 7

INSTITUTE

Thank you

Lorenzo.Vannini@santannapisa.it

Smarter website link:
https://www.smarter-rfcs.eu/
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