Exploring and Optimizing Process Off-Gas Management in Steelworks During Their Transitions Towards C-Lean Processes

SMARTER

Steam and gas networks revamping for the steelworks of the future

Lorenzo Vannini , Ismael Matino, Stefano Dettori , Valentina Colla

ESTEP 2024 Annual Event

29/10/2024

European Steel Technology Platform

20 years together

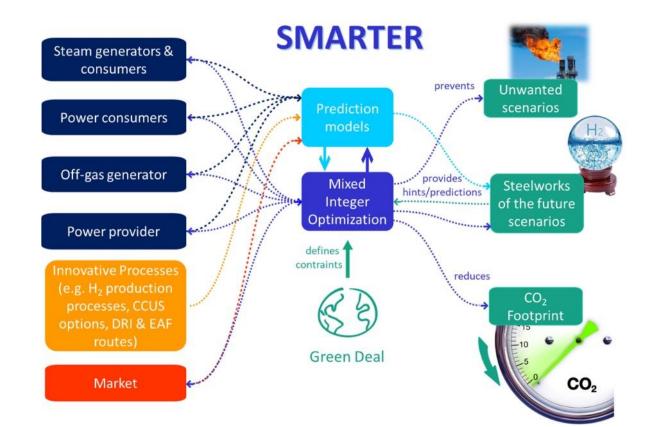
voestalpine

Steel Production impact

In 2023, around **126 million tons** of steel were produced in the EU.

1 ton of steel directly produces about 1.5 tons of CO2

about 6% of European CO2 emissions come from this sector



The Smarter Project

SMARTERdevelopsadvancedmethodologiesand tools to revamp andoptimizegasand steamnetworks,enhancingenergyefficiency,reducingCO2emergyandloweringenergyandmanagementcosts.

New scenarios

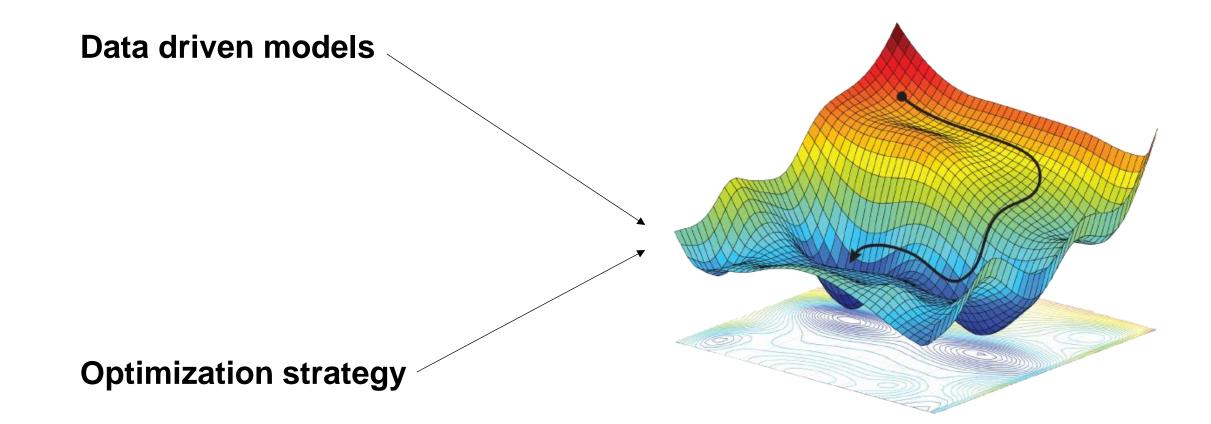
Simulation of **future** innovative scenarios:

• **Optimize** the management and the structure of the steam and gas networks inside integrated steelworks in the light of the future developments of the steel production

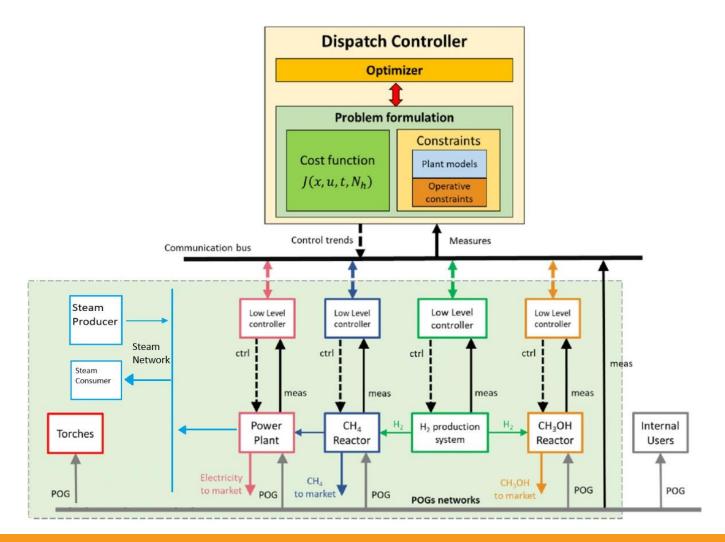
Minimizing environmental impact

Minimizing system stress

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE


Problems

The POGs are produced intermittently


Solution

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Control Scheme

Followed approach, Assumptions and New Ideas

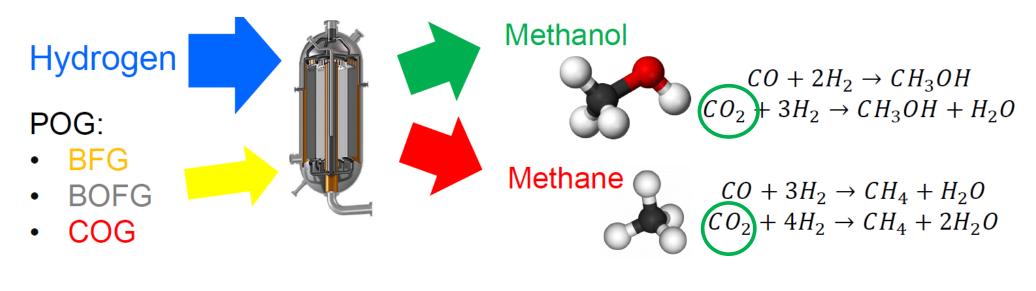
- Enhance existing models, developing new units models, and consider the amount of carbon dioxide captured with CCSU solutions, e.g., for methane and/or methanol synthesis (as next slide), and produced/consumed by the system also in case of transitional scenarios (e.g., replacement of BF with EAF and DR process)
- **Test** forecast algorithms to predict physical quantities

AND PHOTONICS

M

• **Develop** Key Performance indicators that **directly** quantifies the control performances :

$$KPI_{\boldsymbol{\in}} = \beta \sum_{k=1}^{N_{\text{simulation}}} (q_{\text{sold}}(k) - q_{\text{purchased}}(k)) \qquad KPI_{\text{time}} = k_{\mu}\mu_{\text{time}} + k_{\sigma}\sigma_{\text{time}} + k_{\text{comp}}t_{\text{comp}}^{\text{max}}$$

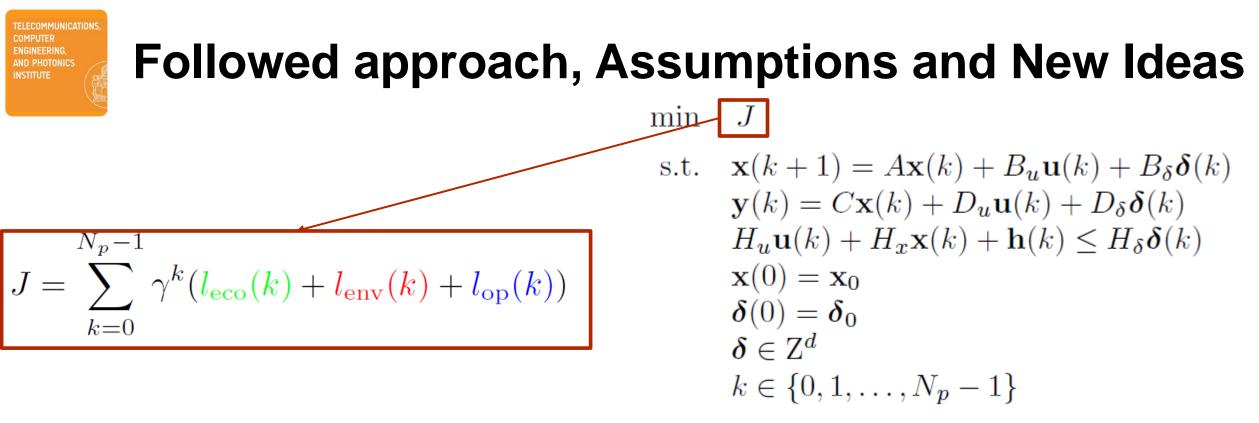

$$KPI_{\Delta} = \sum_{k=1}^{N_{\text{simulation}-1}} (\sum_{i} c_{i} |q_{i}(k+1) - q_{i}(k)| + \sum_{r} c_{r} |\delta^{r}(k+1) - \delta^{r}(k)|) \qquad KPI_{\text{CO}_{2}} = \alpha \sum_{k=1}^{N_{\text{simulation}}} q_{\text{CO}_{2}}^{\text{s}}(k) - q_{\text{CO}_{2}}^{p}(k)$$

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Followed approach, Assumptions and New Ideas

It is possible to valorize POG by converting them into chemicals that can be stored or sold

$$KPI_{\rm CO_2} = \alpha \sum_{k=1}^{N_{\rm simulation}} q_{\rm CO_2}^{\rm s}(k) - q_{\rm CO_2}^{p}(k)$$


Followed approach, Assumptions and New Ideas

The **CO**² **produced** in the power plant can be calculated by using basic **chemical transformations** related to combustion process

$$C_{\alpha}H_{\beta}O_{\gamma} + \left(\alpha + \frac{\beta}{4} - \frac{\gamma}{2}\right)(O_{2} + 3.77N_{2}) \rightarrow \alpha CO_{2} + \frac{\beta}{2}H_{2}O + 3.77\left(\alpha + \frac{\beta}{4} - \frac{\gamma}{2}\right)N_{2}$$
$$KPI_{CO_{2}} = \alpha \sum_{k=1}^{N_{simulation}} q_{CO_{2}}^{s}(k) - \left(q_{CO_{2}}^{p}(k)\right)$$

- $l_{eco}(k) = \mathbf{c}_p^T \mathbf{E}_p(k) \mathbf{c}_s^T \mathbf{E}_s(k)$
- $l_{env}(k) = -q_{CO_2}^s(k) + q_{CO_2}^p(k)$
- $l_{op}(k) = +C_{rs}(k) + C_{\Delta v_r}(k) + C_{\Delta PEM}(k) + C_{LGH}(k) + \mathbf{c_s}^T \mathbf{s}(k)$

Simulated Scenarios

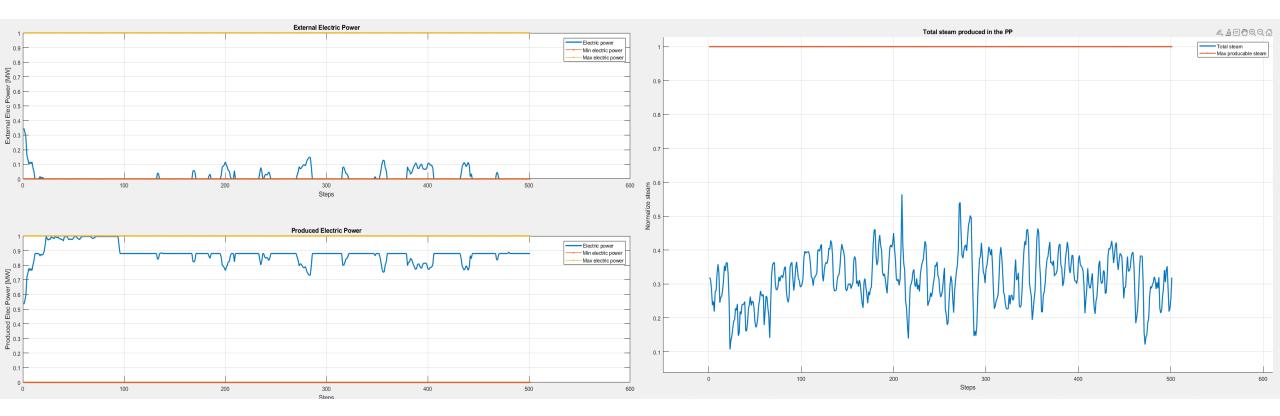
- Standard Route
- Standard Route + Methane Reactor
- Standard Route + Methanol Reactor
- Replacement of 1 BF with EAF and externally purchased DRI
- Replacement of 1 BF with EAF and internally produced DRI, and Methane Reactor is considered
- Replacement of 1 BF with EAF and Green energy is considered

Reference Scenario

Standard Route including 1 coke plant, 1 big BF, 2 small BFs and 3 converters

Historical energy prices

Internal energy (heat, electricity, steam) demands is always satisfied


POGs excess can only be rerouted to PP and torches

Time changing production and consumption

Reference Scenario Results

Electrical power

Steam production

New Scenarios

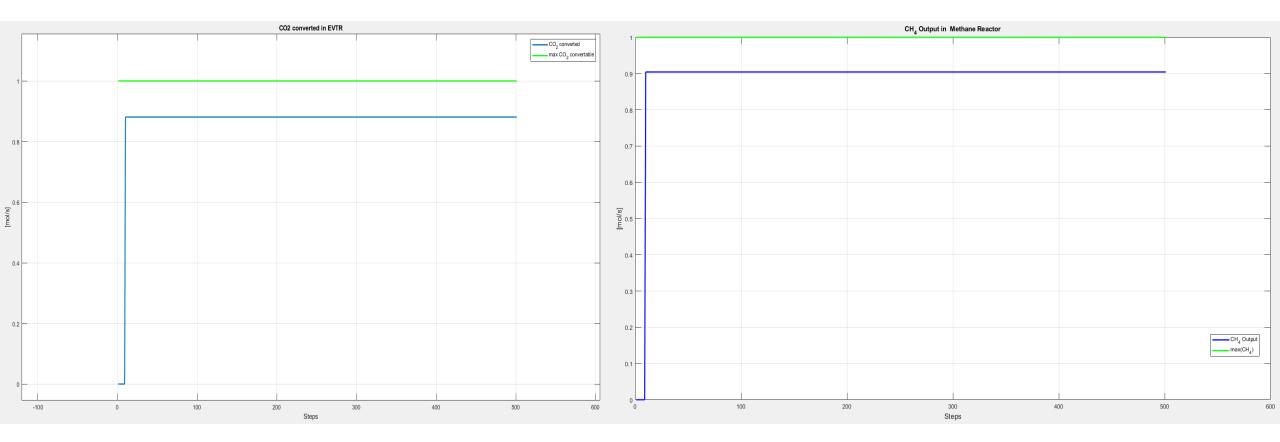
Standard Route

POGs excess can only be rerouted to PP and torches

Novel Route

POGs excess can be rerouted to PP, torches and methane reactor

Remark:


- Physical constraints are always considered
- Internal energy demands are always satisfied
- Used H₂ is considered green

KPI	Value
Money KPI %	$\approx +37.1\%$
Total KPI CO_2 %	$\approx -9.1\%$

CO₂ converted

CH₄ output

New Scenarios

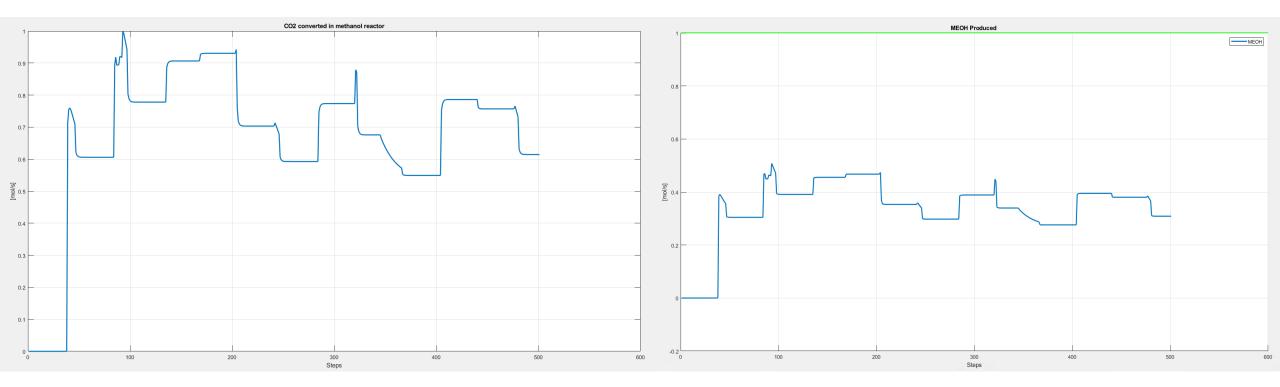
Standard Route

POGs can only be rerouted to PP and torches

Novel Route

POGs can be rerouted to PP, torches and methanol reactor

Remark:


- Physical constraints are always considered
- Internal energy demands are always satisfied
- Used H₂ is considered green

KPI	Value
Money KPI $\%$	$\approx +50,3\%$
${\rm Total \; KPI \; CO_2 \; \%}$	$\approx -4,6\%$

Results

CO2 converted

MeOH produced

New Scenarios

Replace 1 small BF with EAF fed by scrap and externally purchased DRI

Considerations and KPIs results

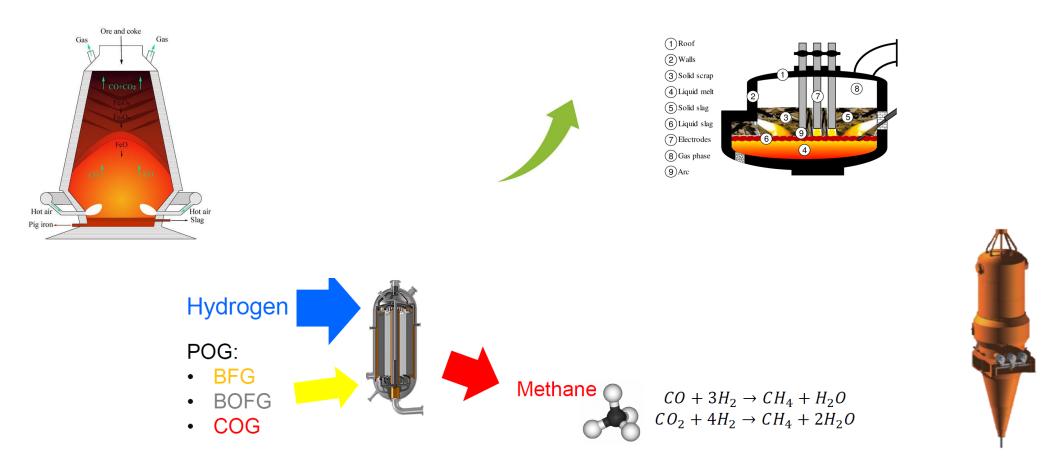
We have replaced 1 small blast furnace; we have used historical data and physical models to calculate the **energy** requirements

$$E_{\rm EAF} = \frac{2.344}{\eta_{\rm DRI}} \times \left(\frac{M_{\rm DRI}}{M_{\rm TM}}\right) + 371.874 \quad [\rm kWh/ton]$$

and CO₂ emissions (direct and indirect) for the Electric Arc Furnace (EAF)

$$CO_2^{EAF} = 9.002 \times \left(\frac{M_{DRI}}{M_{scrap} + M_{DRI}}\right) + 327.109 \quad [kgCO_2/ton]$$

KPIs Results


KPI	Value
Money KPI %	$\approx -58.54\%$
Total KPI O_2 %	$\approx -17.52\%$

New Scenarios

Replace 1 small BF with EAF fed by scrap and DRI internally produced + methane reactor

Considerations and KPIs results

We can calculate the CH₄ demand in $\frac{Nm^3}{tDRI}$ by the shaft furnace $M_{CH_4} = \left\{-300.220R_{H_2}^3 + 175.677R_{H_2}^2 - 130.886R_{H_2} + 259.521, \quad 0 \le R_{H_2} < 1\right\}$

 CO_2 equivalent output from the whole DRI process in kg/tDRI.

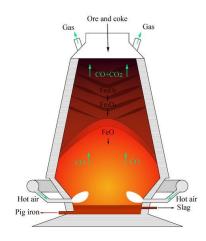
$$q_{\rm CO_2}^{\rm DRI} = \begin{cases} -474.224R_H^2 + 39.721R_H + 438.519, & 0 \le R_H < 1 \end{cases}$$

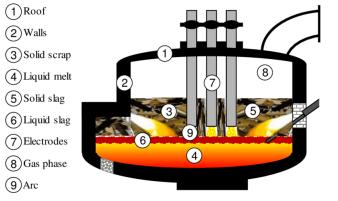
And energy consumed in kWh/tDRI. $E^{DRI} = 112.5$

Remark:

- Physical constraints are always considered
- Internal energy demands are always satisfied
- Used H₂ is considered green

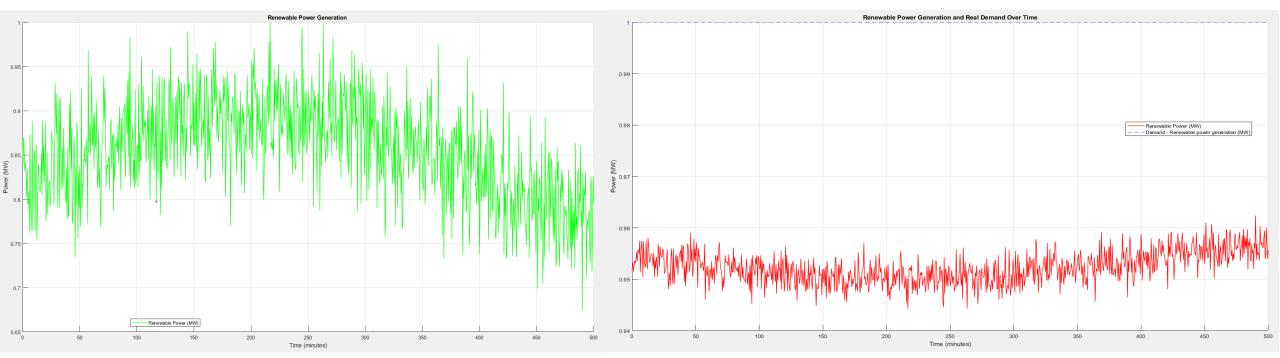
KPIs Results


KPI	Value
Money KPI %	$\approx -31.6\%$
Total KPI CO_2 %	$\approx -28.1\%$



New Scenario

Replace 1 small BF with EAF and renewable energy is considered



$$P_{\text{renewable}}(t) = P_{\text{avg}\text{-ren}} + A\sin(\omega t + \phi) + \epsilon$$

Considerations and KPIs results

Renewable Power

KPIs Results

KPI	Value
Money KPI $\%$	$\approx -50.81\%$
Total KPI $O_2 \%$	$\approx -19.52\%$

Internal Demand

Final scenario KPIs comparison

KPI	Value
Money KPI %	$\approx +37.1\%$
Total KPI O_2 %	$\approx -9.1\%$

Standard route + Methane Reactor

KPI	Value
Money KPI %	$\approx -58.54\%$
Total KPI CO_2 %	$\approx -17.52\%$

1 small BF replaced with EAF and externally purchased DRI

BF partially replace with EAF+ Renewable energy

KPI	Value
Money KPI $\%$	$\approx -50.81\%$
Total KPI $O_2 \%$	$\approx -19.52\%$

KPI	Value
Money KPI %	$\approx +50,3\%$
Total KPI CO ₂ %	pprox -4.6%

Standard route + Methanol Reactor

KPI	Value
Money KPI %	$\approx -31.6\%$
Total KPI O_2 %	$\approx -28.1\%$

1 small BF replaced with EAF and internally produced DRI + Methane Reactor

Conclusions and future works

We can clearly see an **environmental and an economic improvement when syntheses reactors are used** but It's crucial to remark economic feasibility heavily depends on the **hydrogen production cost** [2].

It's important to recognize that, due to the complexity of the optimization system, it is highly sensitive to changes. Variations in production, consumption, and price can result in significantly different outcomes.

These studies are still in progress, and further considerations needs to be done.

Nevertheless, they certainly offer valuable insights for guiding steelworks transitions towards C-lean processes

Many additional scenarios can still be analyzed and compared with the baseline case, including dynamic price fluctuations, disturbances in the production, introduction of storage possibilities for chemicals produced by the reactors and introduction of Mixed-Integer Quadratic Programming techniques.

[2] Matino, I., Dettori, S., Zaccara, A., Petrucciani, A., Iannino, V., Colla,..& Rompalski, P. (2021). Hydrogenrolein the valorizationof integrated steelworks process off-gases through methane and methanol syntheses. *Matériaux& Techniques*,

Thank you

Lorenzo. Vannini @santannapisa.it

Smarter website link: https://www.smarter-rfcs.eu/

