Utilization of recovered refractory material as slag additive and experimental determination of liquid sla properties

Alexander Halwax ^a, <u>Irmtraud Marschall</u>^a, Nina Schlemmer ^a,

Florian Kek ^b, Christian Weiß ^c, Simon Moll ^c, Jan Eisbacher-Lubensky ^d

- ^a K1-MET GmbH
- ^b RHI Magnesita
- ^c Chair of Process Technology and Industrial Environmental Protection, Montanuniversitaet Leoben
- ^d Chair of Ferrous Metallurgy, Montanuniversitaet Leoben

30.10.2024

ESTEP 2024 Annual Event

European Steel Technology Platform

FOR GREEN STEEL 3rd INTERNATIONAL CONFERENCE meets

20 years together

Introduction

metallurgical competence center

To meet the European Commission's Green Deal climate target:

Existing processes need to be optimized to reduce greenhouse gas emissions

Slag metallurgy is a key factor, as slags have a

significant influence on process efficiency.

State of the art:

addition of usually CaO- and MgO-containing slag additives allows adjustment of the slag composition for optimum process operation

Investigated properties:

- Diffusion coefficient
- Activity
- Dissolution behaviour of secondary metallurgical additives in the slag
- Viscosity
- Electrical conductivity

To save resources and reduce CO₂ emissions:

use of secondary metallurgical additives (recycled refractories)

Determination of diffusion coefficients

MET

metallurgical competence center

Rotating cylinder method

Method

- Post-mortem analysis
- Effective boundary layer thickness defined and adjustable
- Experimental conditions are exactly reproducible

Experimental setup for dissolution tests in FeO-free slags

Determination of diffusion coefficients

Calculation model

metallurgical competence center

$$0.42 \cdot l \cdot \left(\frac{R_1}{\nu (R_2 - R_1)}\right)^{\frac{1}{4}} \cdot D_{eff}^{\frac{3}{4}} + 0.62 \cdot \frac{R_1}{\nu 0} \cdot D_{eff}^{\frac{2}{3}} - \overline{j_{tot}} \cdot \frac{2 \cdot l + R_1}{\omega^{\frac{1}{2}}} \cdot \frac{1 + 0.566}{\rho_s (B)} = 0$$

$$R = \frac{W_s - W_0}{\rho_s}$$

$$B = \frac{w_s - w_0}{1 - w_s}$$

- immersion length of sample l
- radius of sample R_1
- inner radius of crucible R_2
- D_{eff} effective binary diffusion coefficient of dissolving substance
 - kinematic viscosity of slag ν

- j_{tot} average mass flow density
- slag density ρ_s
- mass transfer parameter В
- saturation concentration of slag for dissolving oxide W_{s}
- concentration of slag for dissolving oxide W_0

Diffusion coefficient

Slog	Composition [wt%]						
 Slay	SiO ₂	CaO	AI_2O_3	MgO	FeO		
BF	40	40	15	5	-		
BOF	30	30	-	-	40		
CA	5	50	45	-	-		
 Woll	45	40	15	-	-		

MET

metallurgical competence center

- Dissolution experiments of CaO provided these radius decreases as a function of the dissolution time,
- which were then used to calculate the mass flow densities.
- Dissolution rate in a slag increases with increasing temperature due to
 - decrease in slag viscosity
 increasing saturation concentration

A. Halwax, Measurement of diffusion and activity coefficients in slags. PhD Thesis, Leoben (2024).

K1-MET GmbH | 27.11.2024 | 6

The general correlation is:

- diffusion coefficient is high if
- a high mass flow density is achieved at a low mass transfer parameter and a high slag viscosity.

Results Diffusion coefficient

CaO

Determination of activities

Method

Knudsen Effusion Mass Spektrometry (KEMS)

Schematic setup of a KEMS]

$$a_i = \frac{p_i}{p_i^\circ} \qquad p_i = \frac{kI_iTf_i}{n_i\gamma_i\sigma_i}$$

- a_i activity of component *i* in a solution
- p_i / p_i° partial pressure of component *i* in solution / standard state
 - *k* pressure calibration factor
 - I_i ion intensity of species *i*
 - T temperature
 - f_i ratio of M^+ to $\sum M^+$
 - n_i isotopic abundance
 - γ_i multiplier factor
 - σ_i ionization cross-section of species *i*

Results Activity

metallurgical competence center

A. Halwax, Measurement of diffusion and activity coefficients in slags. PhD Thesis, Leoben (2024).

K1-MET GmbH | 27.11.2024 | 8

Activity

Al₂O₃ [wt.-%]

metallurgical competence center

Δ Measured and FactSage values

Clea	Chaolog	T range	Δa_i	Δa_i
Slag	Species	[°C]	[-]	[%]
BF	CaO	1500-1900	-0.0128	51
BF	MgO	1500-1900	-0.0643	149
BOF	CaO	1500-1900	0.0066	33
CA	CaO	1500-1900	0.0992	23
Woll	CaO	1500-1900	-0.0236	178
DS	CaO	1500-1900	0.1615	51
DS	MgO	1500-1900	0.2128	51
DS sat.	CaO	1600-1900	0.2944	38
DS sat.	MgO	1600-1900	0.2946	49

Determination of dissolution behaviour

Method

		Composition [wt%]							
Sla	Slag	SiO_2	CaO	AI_2O_3	MgO	FeO	MnO		
BOF_	_1	15	43	0	4	30	7		
BOF_	_2	23	36	32	6	1	1		
Smelt	er	44	40	12	3	1	0		

A	Composition [wt%]						
Additive	SiO ₂	CaO	AI_2O_3	MgO	FeO	TiO ₂	
CaAl-slag	1	25	71	3	0	0	
TE80+Lime	9	21	64	3	2	2	
Dololime	2	58	1	39	1	0	
MgO75+Lime	2	56	2	39	2	0	

Determination of dissolution behaviour

Method

	Composition [wt%]					
Slag + additive	SiO_2	CaO	AI_2O_3	MgO	FeO	MnO
BOF_1+CaAl-slag	13	40	12	4	25	6
BOF_1+TE80+Lime	14	39	11	4	25	6
BOF_2+CaAl-slag	20	35	39	6	0	0
BOF_2+TE80+Lime	22	35	38	6	0	0
Smelter+Dololime	40	44	9	7	0	0
Smelter+MgO75+Lime	44	40	12	3	1	0

Dissolution behaviour

metallurgical competence center

K1-MET GmbH 27.11.2024 | 12

Dissolution behaviour

Al₂O_{3 TE80+Lime} 45 -∎--- MgO_{CaAl-slag} BOF_2 40 -35 → SiO_{2 CaAl-slag} ■ T_{exp} = 1600 °C 30 -**▼**-- CaO_{CaAl-slag} $AI_2O_3 \text{ }_{\text{Ca-Al-slag}}$ [% 25 -- 20 -15 □ - MgO_{TE80+Lime} • m_{slag, 0} = 200 g $\odot - Al_2O_3 TE80+Lime$ - SiO_{2 TE80+Lime} 10 - \bigtriangledown – CaO_{TE80+Lime} m_{additive} = 40 g 5 · 0. Theoretical dissolution rates 30 10 20 40 50 60 0 of the standard additive and Dissolution time [min] 12 the prepared refractory 10 · CaAl-slag material show also an almost 8 - TE80+Lime dm/dt [g/min] identical trend. 6 Recycled refractory materials 2 · mixed with lime represent an 0 -2 alternative to the standard -4 additives. 30 20 40 50 60 10 Dissolution time [min]

Dissolution behaviour

metallurgical competence center

K1-MET GmbH | 27.11.2024 | 14

Viscosity measurement Method

metallurgical competence center

Motivation

- Impact of viscosity on dissolution behaviour:
 - visocity ↓ → dissolution rate ↑
- Many calculation models in literature
- Model is considered good if the error is less than 30%.

Furnace: – max sample temperature: 1730°C

Rheometer Head:

Air bearing system

Rheometer FRS 1800 Anton Paar

Viscosity measurement

Method

Chemical composition slag [wt.-%]

	Smelter Slag
SiO ₂	40.3
CaO	43.7
AI_2O_3	8.5
MgO	7.4
CaO/SiO ₂	1.08
Calculated liquidus temperature	1372 °C

Experimental

- Molybdenum system
 - Dimensions:
 - Crucible inner Ø 23 mm
 - inner height 80 mm
 - Bob: Ø 17 mm
 - hight 25 mm

- Shear rate 5, 10,15,20 and 30 s⁻¹
- Argon purging
- Heating regime
 - Rapid heating to 1350°C and 20 min dwell
 - Temperature Steps: 1350, 1400, 1500 and 1600°C

Viscosity

- Above liquidus temperature: Newtonian behavior
- Below liquidus lemperatur: shear- thinning behavior due to solids
- Above liquidus temperature: viscosity follows Arhenius approach
- Below liquidus temperatur: additional increase in effective viscosity due to solids

Electrical conductivity measurements in ironand steelmaking slags

metallurgical competence center

Method

- Describes the current flow caused by an applied voltage
- Current flow results in the movement of electrons (electronic conduction) or the migration of cations and anions (ionic conduction)

Intensive material property

- Accessible via electrical resistance measurement
- Different measurement setups/electrode arrangements and evaluation methods

$$\sigma = \frac{1}{R} * \frac{L}{A}$$

A ... current-carrying area
L ... mean current path length
R ... electrical resistance

Electrical conductivity measurements in ironand steelmaking slags

metallurgical competence center

Measurement

Method

Four electrode setup (Van der Pauw setup)

Potential measurement Current carrying conductor

- Vacuum radiation furnace under argon atmosphere
- Measurements at different immersion depths with additional variation of the current and voltage path

Electrical conductivity of smelter slag

Evaluation:

- Several impedance spectra per immersion depth
- Equivalent circuit approximation
- Calculation electrical conductivity

Increase of of electrical conductivity with increasing temperature

Conclusion

- Investigated properties:
 - Diffusion coefficient
 - Activity
 - Viscosity
 - Electrical conductivity
- Dissolution behaviour of secondary metallurgical additives in the slag
 - Recycled refractory materials mixed with lime represent an alternative to the standard additives.

Utilization of recovered refractory material as slag additive and experimental determination of liquid slag properties

Linz, 30. Oct. 2024

Alexander Halwax ^a, <u>Irmtraud Marschall</u>^a, Nina Schlemmer ^a, Florian Kek ^b, Christian Weiß ^c, Simon Moll ^c, Jan Eisbacher-Lubensky ^d

^a K1-MET GmbH

^b RHI Magnesita

Chair of Process Technology and Industrial Environmental Protection, Montanuniversitaet Leoben
 ^d Chair of Ferrous Metallurgy, Montanuniversitaet Leoben

Coordinated by

Financially supported by

 Federal Ministry Republic of Austria Labour and Economy
 Federal Ministry Republic of Austria Climate Action, Environment Energy, Mobility, Interpretation of the Austria

familienfreundlich

Arbeitgeber

nergy, Mobility, nnovation and Technology

