
COACH

COId-bonded Agglomerates for blast furnace ironmaking with **CH**emically engineered binders

ESTEP 2024 Annual Event

Frédéric VAN LOO – CRM Group

30th of October 2024

European Steel Technology Platform

20 years together

voestalpine

A CIRCULAR ECONOMY DRIVEN BY THE EUROPEAN STEEL

COACH – EU funded RFCS

RFCS-2019 - 899318

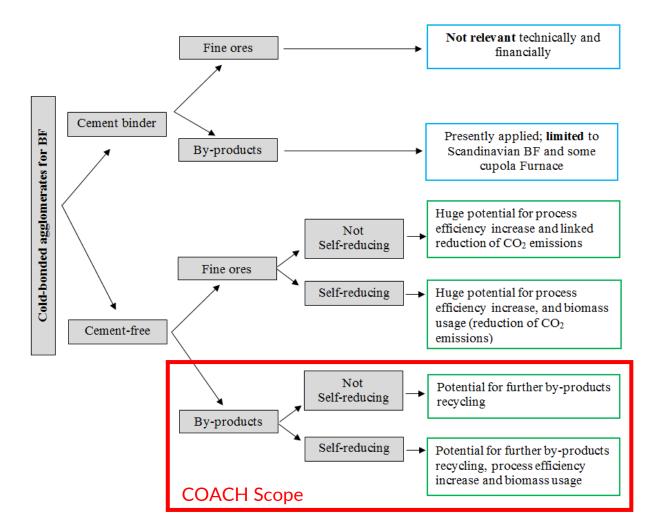
Project objective

Demonstrating the use of cold-bonded agglomerates in Blast Furnaces

- ✓ cement-free
- ✓ from waste material
- ✓ self-reducing

Final prospect

3

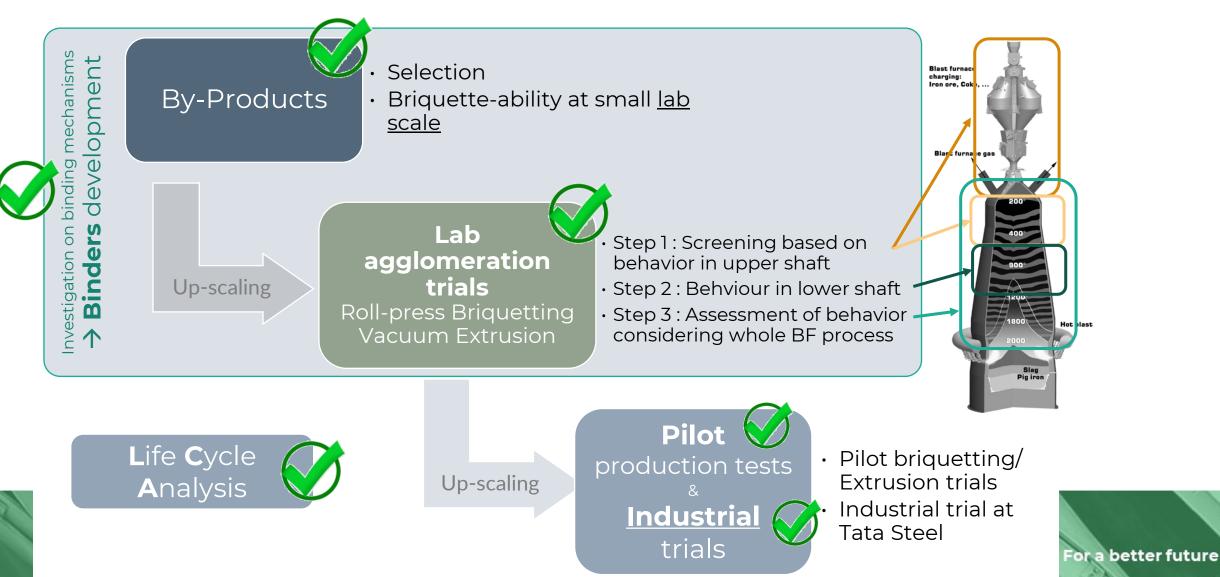

3

Improve internal wastes recycling at BF

= Increased recycling rate through BF route \leftrightarrow sinter plants closure due to transition BF \rightarrow DR

Reduce energy use and CO₂ emissions :

- Cold agglomeration is more energy efficient and generates less CO₂ than sintering
- Reduced BF coke consumption
 - \Leftrightarrow %C briquets (Recipe 3)
 - ⇔ % Fe_metal briquets (Recipes 1 & 2)



COACH 30th of October 2024

COACH - Project Structure

Overview

By-products

Selection

<u>3 recipes</u> defined :

 \rightarrow 2 x Fe based

 \rightarrow 1x high %C

Materials briquette-ability

- Mini roll-press briquetting device
- Cement alone X

30

- Polymeric binders : OK with selected ones (0,5 to 1%)
- > Cement (5%) + Polymeric binder (0,5%) \rightarrow OK
 - Cement : ↑ mechanical strength + faster curing time
 - Polymeric binder : plasticity for agglomeration
- → Selection of trial conditions to be tested at bigger scale : Roll-press briquetting & Stiff vacuum extrusion

wt%	Maintuna	Dry sample composition								
	Moisture	С	S	Fetot	Fe _{metal}	AI2O3	CaO	SiO2	MnO	ZnO
BOF Coarse Sludges	9,20	2,8	0,24	82,5	69,9	0,39	8,0	0,4	0,16	0,88
Oily mill scales (DDS scales)	3,94	0,3	0,10	74,0	0,3	0,11	0,1	0,1	0,55	0,10
BF sludge low Zn	32,50	33,6	0,30	36,7	0,7	2,08	2,3	4,5	0,22	0,62
Fine BF flue	7,45	55,1	0,07			1,36	5,2	3,0		0,41
waste carbon fines	10,7	34,6	0,06			2,11	4,1	9,0		0,02

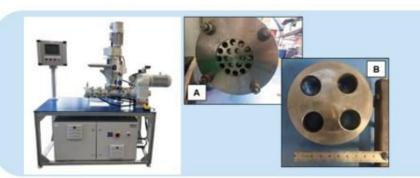
COACH 30th of October 2024

Wastes from integrated steel plants → 3 recipes identified

Fe based	Recipe 1	100% BOF coarse sludge	Fe Fe_met ZnO C	82 % 70 % 0.9 % 3%
Fe b	Recipe 2	60 % BOF Coarse sludge 40 % OM Scales	Fe Fe_met ZnO C	79 % 42 % 0.6 % 2 %
High %C	Recipe 3	47.5% Fine BF Flue dust 47.5% BF Sludge low Zn 5% waste carbon fines	Fe Fe_met ZnO C	25 % 0 % 0.5 % 44 %

3

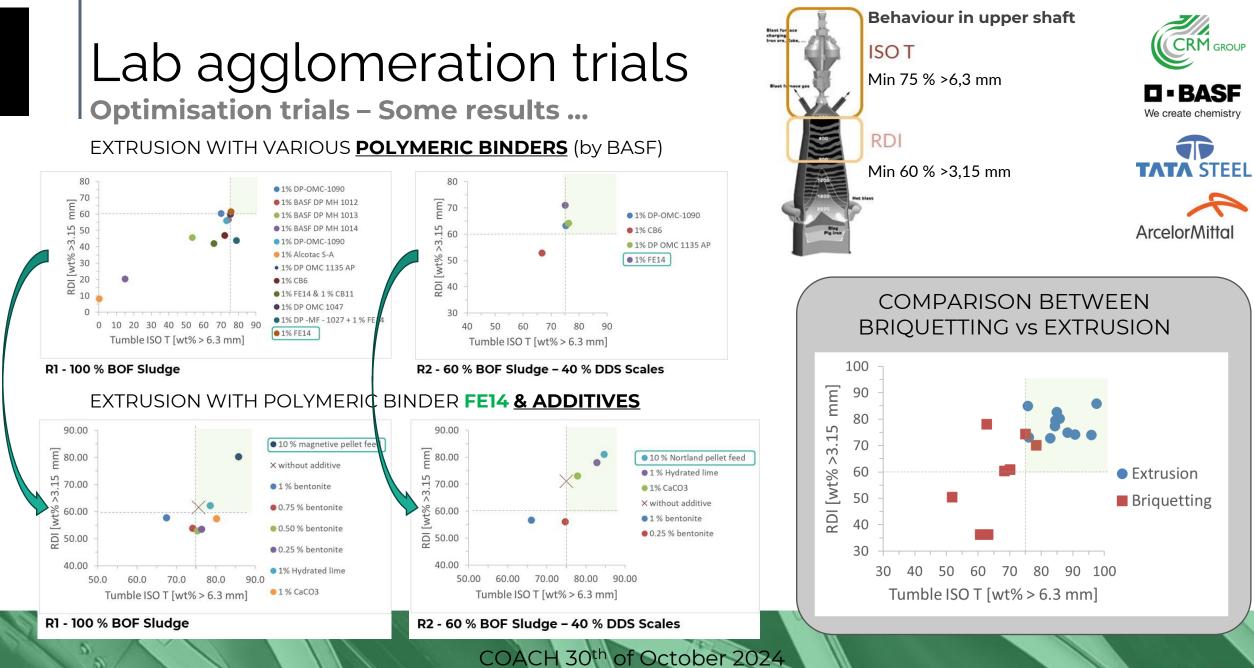
3


e L = 65 mm D = 35 mm t = 20 mm W = 2 mm

Roll-press Briquetting

Eirich intensive mixer of 40 liters
 KOMAREK B220 Roll press

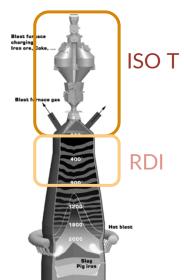
Lab & pilot scale : 114-450 kg/h



Stiff Vacuum Extrusion
1. Eirich mixer of 5 liters
2. Extruder Handle PZVM8e

50 kg/h

COACH 30th of October 2024



Lab agglome	eration trials	D50 BOF sludge = 230 μm	CRM GROUP
Summary	Development steps	$OMS = 458 \ \mu m$ Pellet feed = 21 $\ \mu m$	We create chemistry
Technology selection → Extrusion (same additive and briquets size) + Working points Optimisation	Binder selection → Polymeric (Alcotac®FE14 or CB6) = polyacrylamide based	Relevant additives selection → Pellet feed for R1 and R2 ⇔ Optimised PSD	ArcelorMittal
Best achieved quality \leftrightarrow S	Step 1 = Behaviour in upper s	shaft	

Pacipa	Pindor	ISO T	RDI
Recipe	DITUEI	wt% > 6.3 mm	wt% < 3.15 mm
P1 + 10% DE		70,1	39,0
KI + 10/0 FF	1 % FE14	85,7	19,7
D2 + 10% DE		78,3	29,8
NZ + 10/0 PF		84,8	17,2
D2	2% CB6	74,9	25,5
СЛ	270 CD0	97,5	14,1
	Recipe R1 + 10% PF R2 + 10% PF R3	R1 + 10% PF 1 % FE14 R2 + 10% PF	$ \begin{array}{c} \text{Wt\% > 6.3 mm} \\ \text{R1 + 10\% PF} \\ \text{R2 + 10\% PF} \\ \begin{array}{c} 1\% \text{FE14} \\ 78,3 \\ 84,8 \\ \hline 84,8 \\ \hline 74,9 \\ \end{array} $

Target

50

COACH 30th of October 2024

min 75%

Max 40%

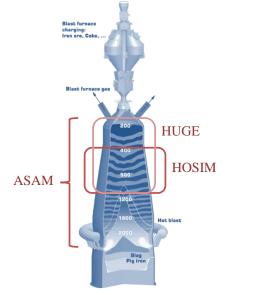
Step2 = Behaviour in Lower shaft : Will briquettes keep their integrity until cohesive zone ?

Best agglomerates (Extrusion) were tested at higher temperature (1000°C) under reducing atmosphere (40%CO)

+ submitted to tumble degradation

3

3


			Weight loss	Tumble degradation		
	Recipe	Binder	%	% > 3,15 mm	% <0,5 mm	
BRI	R1 + 10% PF R2 + 10% PF	1 % FE14	9	69	26	
EXT			10	77	20 /	
BRI			9	90	7	
EXT	NZ + 10/0 PF		10	87	10	
BRI	R3	2% CB6	24	0	95	
EXT	C.N		56	1	84	

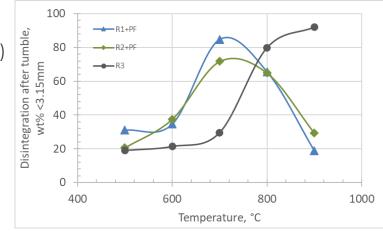
COACH 30th of October 2024

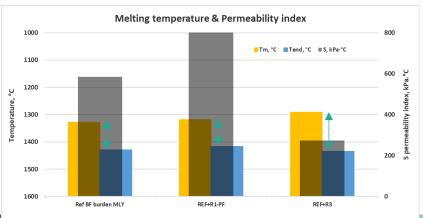
Step 3 = Behaviour in the overall BF (Extruded briquets)

- Interrupted HOSIM \rightarrow upper Shaft (400-910°C)
 - 600-700 °C : polymer degradation \rightarrow %dust \uparrow •
 - > 800 °C :
 - \circ R1/2 + PF : strength recovery \leftrightarrow 'sintering'
 - ++ degradation R3: 0

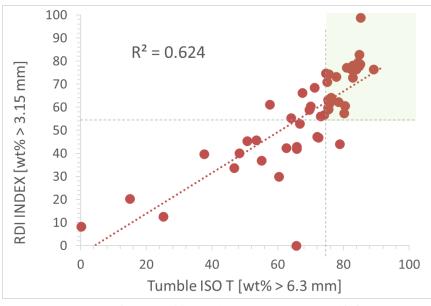
- ASAM (advanced Softening and melting) Cohesive Zone (\rightarrow 1600°C) Ref. Ferrous burden
 - + 10% [R1+PF] \rightarrow slightly \downarrow permeability | minor impact on CZ •
 - •

3


3


- \rightarrow ↑ permeability
- | CZ downwards to >T°C

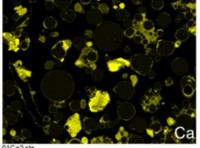
COACH 30th of October 2024



On the binding mechanisms

Correlation of resistances

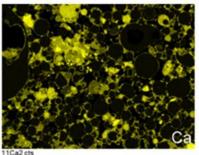
<u>Fundamental question</u>: the polymer is expected to degrade at high temperature, yet FE14/CB6 improves the RDI index ...


Bonding effect is non-reversible

3

3

Polymeric binders


→ Calcium dispersion (observed with SEM-BSE)

Binderless

OfCa1cts

With FE14

With FE14 after RDI

Hypothesis : Interstitial Ca promotes adhesion at high

The calcium redistribution is explained by the affinity of the polymer binder with cations such as Ca2+ "

COACH 30th of October 2024

Pilot and industrial trials

Pilot trials

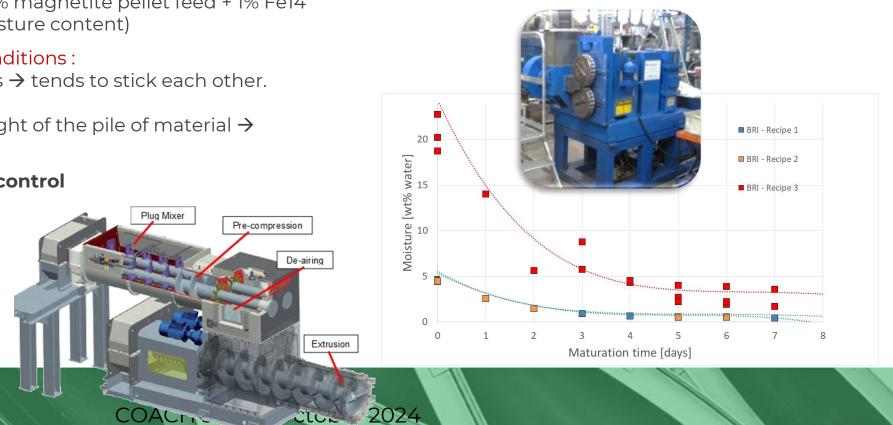
Stiff-Vacuum Extrusion

MAGMA 475 vacuum group -7-26 m³/h ~ **28 - 104 t/h**

Successful production of 2,2 tons of R1 :

- (R1+) BOF coarse sludge, 10% magnetite pellet feed + 1% Fe14
- 2 batches (7,89 7,69 % moisture content)

But un-optimal processing conditions :


- Recently produced briquets \rightarrow tends to stick each other.
- Quite soft
- Part compacted by the weight of the pile of material → amorphous mass

Critical parameter = **moisture control**

Roll-press Briquetting

- I. Eirich intensive mixer of 40 liters
- 2. KOMAREK B220 <u>Roll</u> press 114-450 kg/h

Pilot and industrial trials

Industrial trial at Tata Steel IJmuiden

DEX 300

Extruder

Productivity **3t/hr**

- Q1 2024 : adaptation of the extruder of the HISARNA pilot plant for continuous production
 - + small volume production & quality tests ⇔ Optimum recipe
 - + Lab scale trials at CRM
- May : commissioning and shifts training
 - June : Production of extrudates = **150-160 tons**
 - + 20 days curing
 - ightarrow Briquettes charged into BF

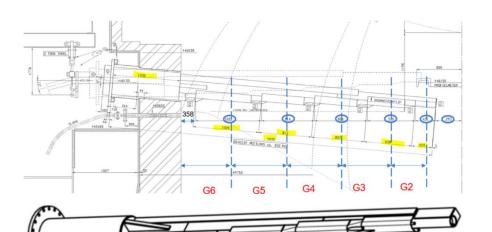
Recipe =

- BOF sludge
- + 20% BF bunker dust \Leftrightarrow reduce %moisture + improve PSD binder =
 - 1% Alcotac®FE14
 - + 1% waterglass ⇔ rainy weather during curing time

Optimal moisture content = 8 – 8,5%

Curing under rainy weather

COACH 30th of October 2024

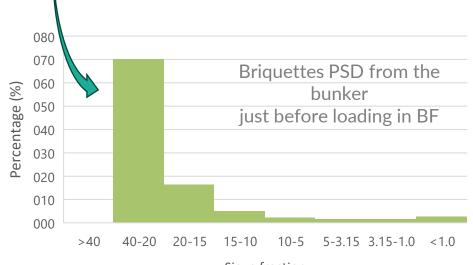

Pilot and industrial trials

Industrial trial at Tata Steel IJmuiden

→Briquets charging in BF6 (2,6 Mt/y) in 18hours
⇔ 2% of the ferrous burden (locally > 3%)

→Results :

- BF process stability : no impact
- Dust : lower dust emission



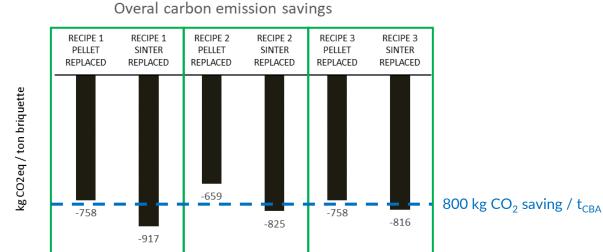
COACH 30th of October 2024

Briquettes just after production : average size 8-10 cm

Sieve fraction

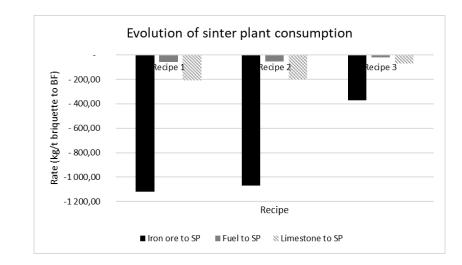
COACH – Process impact evaluation Arcelor Mittal

MMBF ArcelorMittal model


→benefit calculation

3

3


Integrated in an overall plant balance calculation

LCA (WSA, LCI Methodology Report 2017 – ISO standards)

If CBA replace sinter at BF		R1	R2	R3
Coke savings	$Coke/t_{CBA}$	227	148	501
	kg_{coke}/t_{HM}^{*}	36	23,7	80
Sinter replacement	kg _{Sinter} /t _{CBA}	1417	1353	203

* Hypothesis : Briquets = 10% of the ferrous burden = 160 kg_{CBA}/t_{HM}

D - BASE

We create chemist

COACH 30th of October 2024

Thank you

www.crmgroup.be