Development and testing of Low-NOx Roof Burner SMS RADFlame HY2 for the Steel Industry

Tommaso Bortolussi- Process & Technology, Reheating & Heat Treatment Plants SMS group S.p.A.

SMS **(e)** group

Irene Luzzo- Laboratory Responsible, Lab Combustion Station

RINA Consulting – CSM S.p.A.

RIR

FOR GREEN STEEL

3rd INTERNATIONAL CONFERENCE

Thursday, 31st October 2024

20 years together

voestalpine

ESTEP 2024 Annual Event

NOx Emission – EU Action Plan: "Towards Zero Pollution for Air, Water and Soil"

NOx Target Values ?

Actual BAT NOx limits for Reheat furnaces: $\leq 80-200 \text{mg/Nm}^3 @ 3\% O_2 \text{ new plants}$ $\leq 100-350 \text{mg/Nm}^3 @ 3\% O_2 \text{ existing plants}$

Many existing reheat furnaces are emitting higher values

Country and plant specific requirements may limit NOx emissions of existing furnaces below **200mg/Nm³ @ 3% O**₂ Abstract from BAT for reheating furnaces*

Parameter	Type of fuel	Specific process	Unit	BAT-AEL (Daily average or average over the sampling period)	Indicative emission level Daily average or average over the sampling period)	
NOX	100 % natural gas	Reheating	mg Nm ³	New plants: 80 –200 Existing plants: 100 –350	No indicative level	
		Intermediate heating	mg Nm ³	100 -250		
		Post-heating	mg Nm ³	100 -200		
	Other fuels	Reheating, intermediate heating, post-heating	mg Nm ³	100 -350 (31)		
co	100 % natural gas	Reheating	mg Nm ³	No BAT-AEL	10 -50	
		Intermediate heating	mg Nm ³		10 -100	
		Post-heating	mg Nm ³		10-100	
	Other fuels	Reheating, intermediate heating, post-heating	mg Nm ³		10 -50	

3

(*) Commission Implementing Decision (EU) 2022/2110 of 11 October 2022

New SMS RADFlame HY2 Why radiant burners?

Side burner are now the preferred choice thanks to their flexibility and Extra Low NOx emissions BUT **radiant roof burners** are used in many existing reheating furnaces. New radiant burners designed to:

reduce **NOx emissions** of existing furnaces

reduce **carbon emissions** of existing furnaces thanks to hydrogen ready technologies

New SMS RADFlame HY2

Targets of this development

Targets of the new SMS RADFlame HY2 development:

- guarantee Low NOx emission in any working condition
- the burner could be installed in existing furnaces <u>without modification</u> to the furnace roof, or the combustion system or the automation system (no additional valves, no higher combustion air pressure...)

when no change of throughput or fuel is expected, the burner replacement shall <u>not</u> be considered a <u>substantial modification</u> to the existing furnace -> no need of issuing a new CE certification

capability of running with Natural gas and Hydrogen blend up to 75% Hydrogen

Design and CFD analysis

Variables and configurations

Target of CFD:

Predict the flame thermal and chemical behavior Select the most promising geometries Reduce the number of prototypes to be built

Key aspects for SMS RADFlame HY2 development:

1) Comburent air diffuser:

> optimize the air-fuel mixing in the furnace chamber minimise the air pressure drop

2) Fuel lance geometry:

optimize the air-fuel mixing in the furnace chamber

right compromise between flame stability and low NOx emissions

CFD simulations of the prototype

Development process of the prototype

Optimised degree of **air-fuel mixing** thanks to air diffuser and fuel lance **geometry**

Main outcomes of CFD analysis

Experimental activities

RINA-CSM Experimental Station for Combustion Studies, Dalmine (BG), Italy

MEASURMENTS AND SENSORS

- 1. Fuel: NG and SYNGAS (any composition)
- 2. Max fuel flow rate:
 - 300 Nm³/h of NG,
 - 2000 Nm³/h SYNGAS
- 3. Max air flow rate: 3000 Nm³/h
- 4. Air preheater: max temperature 550 °C
- 5. Pollutants monitoring and recording: O₂, CO, CO₂ and NOx
- 6. Control system of furnace
- 7. Flow rate, pressure and temperature monitoring and recording
- 8. Continuous video monitoring

Length (internal)	[m]	3 – 7.5			
Cross Section	[mm] x [mm]	2000 x 2000			
Maximum Burner Capacity	[MW _{gas based}]	3			
Maximum NG Flow Rate	[Nm³/h]	300			
Maximum Syngas Flow rate	[kg/h]	2000			
Maximum Air Flow Rate	[Nm³/h]	3500			
Maximum Working Temperature	[°C]	1250			

Thermocouples for measuring longitudinal temperature profile along burner axis;

Pollutants Monitoring system for O₂, CO & NOx;

Computer Controlled System

Continuous Video Monitoring

All the steps of the experimental activity on the SMS RADFlame HY2 were performed at the RINA-CSM Combustion Lab in Dalmine (BG), Italy

14

Experimental trials Test rig and Design of Experiments

Conditions of experimental trials (targets): Different % of H₂ in the NG-H₂ fuel blend (up to 75%vol.) Different pre-heated air conditions Different turn-down ratios Different furnace chamber temperatures O₂ excess in furnace chamber (1, 2 and 3%)

<u>**Object of this work:**</u> T_furnace= 1150 °C, T_pre h. air= 450 °C, full rating, 1%vol. O_2 excess in the flue gases

Measurements:

- emissions: NOx, CO
- air and fuel supply pressure, temperature and flow rates
- furnace temperature

RINA-CSM Experimental Station for Combustion Studies, Dalmine (BG), Italy

15

Experimental campaign of the SMS RADFlame HY2

Combustion air pressure drop

Combustion air pressure consistent with the majority of existing furnaces, and reduced variability with the working conditions of the furnace

16

* normalized @ 3% O2 DFG with T_furnace= 1150 °C, T_preheat. air= 450 °C, full rating, NG-H2 fuel blend with H2 content up to 75%vol.

Experimental campaign of the SMS RADFlame HY2

Results- 100% NG

(*) normalized @ 3% O2 DFG with T furnace= 1150 °C, T preheat. air= 450 °C, full rating, 100%vol. NG

with 90 mg/Nm3* at 1% O_2 DFG

SMS 🔞 group R

17

Experimental campaign of the SMS RADFlame HY2

Results- NG/H2 blends

SMS RADFlame HY2 with NG-H2 as fuel: NOx emissions at T_furnace= 1150 °C, T_preheat. air= 450 °C, 1%vol. O2 at dry flue gas 160 150 140 NOX [mg/Nm3 @3% O2 DFG] 110 101 102 27% avg. reduction of NOx emissions with NG-H₂ fuel blend 100 90 80 0% 10% 20% 30% 40% 50% 60% 70% H2 (%vol.) addition in NG-H2 fuel blend • • OPTIMISED configuration -O- OLD configuration

NOx emissions below 120 mg/Nm³ * for any NG/H₂ blend up to 75%vol. H₂

(*) normalized @ 3% O2 DFG with T_furnace= 1150 °C, T_preheat. air= 450 °C, 1% O2 @ DFG, full rating, NG-H2 fuel blend with H2 content up to 75% vol.

SMS log group RI

18

Outcomes of the SMS RADFlame HY2 development process

SMS RADFlame HY2 can be easily installed in existing furnaces:

- burner tile can be **customized**
- no need of additional valves and automation adjustment
- no need of increased air pressure

SMS RADFlame HY2 with full NG can guarantee a low NOx emission of **90 mg/Nm³** *

Emissions slightly increase at lower rating and higher furnace chamber temperature

Emissions slightly increase with the hydrogen content but are **below 120 mg/Nm³ with 75%vol. H**₂ *

CFD allowed to develop a **strong and reliable** tool for burner development, while the predictions regarding combustion were more valuable for identifying **trends**, rather than detailed values

20

(*) normalized @ 3% O2 DFG with T_furnace= 1150 °C, T_preheat. air= 450 °C, 1% O2 @ DFG, full rating

Reheating Furnaces Technology by SMS group & RINA-CSM Combustion Lab

Thank you

Tommaso Bortolussi

Process & Technology, SMS group S.p.A. Reheating Furnaces and Heat Treatment Plants Tommaso.Bortolussi@sms-group.com

Irene Luzzo

Laboratory Responsible, RINA Consulting – CSM S.p.A. Lab Combustion Station Irene.Luzzo@rina.org

21