# CFD modelling of flameless combustion: from natural gas to hydrogen

#### **Mattia Bissoli**

R&D Senior Scientist mattia.bissoli@tenova.com





ESTEP 2024 Annual Event













# **Techint Group**



**OUR FAMILY** 



USD **38.4** billion Annual Revenues



**78,500**Permanent Employees



97,000

Total Employees



5

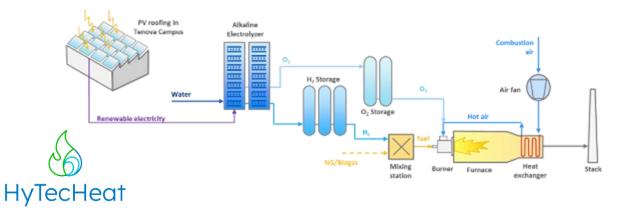
Continents

Revenues as of December 31, 2023



# The problem




#### **NEW TOOLS FOR NEW CHALLENGES**

- Green H<sub>2</sub> combustion: very promising solution for downstream decarbonization
  - ✓ Potentially, 100% CO₂ reduction (Carbon Direct Avoidance)
- Tenova actively supports this transition: integrated development workflow with lab testing + modeling
  - √ R&D equipment upgrade, both lab testing and modeling

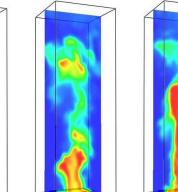
# INDUSTRIAL FURNACE LAB TESTS CFD MODELING DESIGN ENGINEERING Tpeak CFD PC| H<sub>2</sub> – flameless mode

**Modeling** 

#### **Experimental**



 $\checkmark$  H<sub>2</sub> production


Storage

- Distribution
- ✓ Control

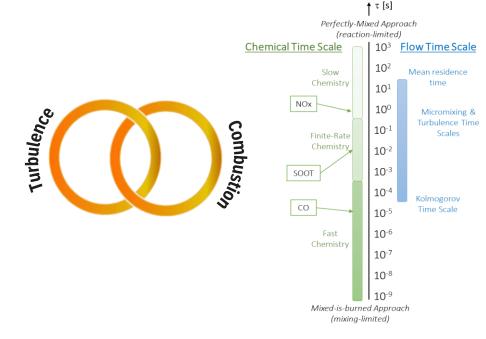
✓ Mixing

✓ Safety

- ✓ Kinetic Mechanism
- √ NOx estimation



- ✓ Combustion model
- ✓ Radiation model


### **Combustion model**

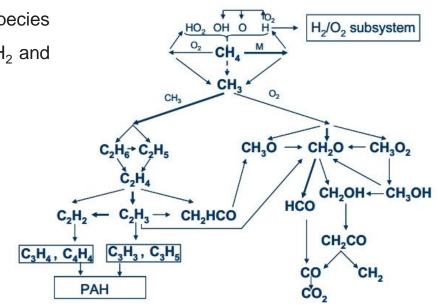


#### **Turbulence-chemistry interaction**

Turbulence enhances mixing, promoting reactivity. Reactions change the temperature, affecting the flow: the **Combustion Model** 

- System configuration + phenomena (flow vs reaction) time scales
  - ✓ MILD combustion: reactants dilution with flue gases, strong chemistry-fluid dynamics competition (Da≈1)
  - ✓ Industrial system: description of slow-forming species (NOx)
- Non-premixed combustion + Finite Rate approach
- EDC + Partially Stirred Reactor (PaSR) model
  - ✓ Specific for MILD combustion: domain-variable interaction parameters based on local conditions (Da)




|                          | Premixed Combustion                                   | Non-Premixed Combustion           | Partially Premixed Combustion                    |  |
|--------------------------|-------------------------------------------------------|-----------------------------------|--------------------------------------------------|--|
| Fast Chemistry           | Premixed Combustion Model                             | Non-Premixed Equilibrium<br>Model | Partially Premixed Model                         |  |
|                          | Reaction Progress Variable                            | Mixture Fraction                  | Reaction Progress Variable +<br>Mixture Fraction |  |
|                          |                                                       | Laminar Diffusion Flamelet        | let Model (Steady/Unsteady)                      |  |
|                          | Flamelet Generated Manifold Model                     |                                   |                                                  |  |
|                          | Finite Rate/Eddy Dissipation Model                    |                                   |                                                  |  |
| ate<br>try               | Laminar Finite Rate Model                             |                                   |                                                  |  |
| Finite Rate<br>Chemistry | Eddy-Dissipation Concept (EDC) Model                  |                                   |                                                  |  |
| Fini                     | Composition PDF Transport Model (Eulerian/Lagrangian) |                                   |                                                  |  |

# **Kinetic Mechanism**



Must reproduce the oxidation the fuels and of all the relevant sub-species alongside the whole temperature range experienced in the system (CH<sub>4</sub>, H<sub>2</sub> and all their mixtures). MILD combustion: intermediate species are important!

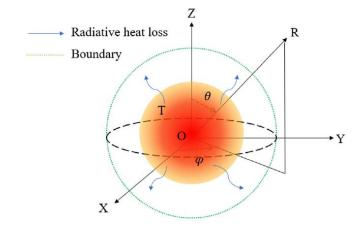
- Global kinetic mechanisms: not suggested for MILD
- Skeletal: ok within the validity range
  - ✓ KEE58: suitable, but NOx sub-mech is missing
- Detailed: suggested for MILD, but a limited number of species (~50, calculation time)
  - ✓ Accurate description of radical species (MILD combustion)
  - ✓ NOx: required, one of the burner design target and benchmark at industrial level



| Name             | Туре     | Species | Reactions | NOx<br>sub-mech. |
|------------------|----------|---------|-----------|------------------|
| KEE58            | Skeletal | 17      | 58        | No               |
| GRI211           | Detailed | 49      | 279       | Yes              |
| GRI30            | Detailed | 53      | 325       | Yes              |
| POLIMIC1C3HT_NOx | Detailed | 159     | 2459      | Yes              |

# Radiation




#### **RADIATIVE TRANSFER EQUATION**

Radiative Transfer Equation (RTE): spatial evolution of radiative intensity *I* and the interaction with surroundings

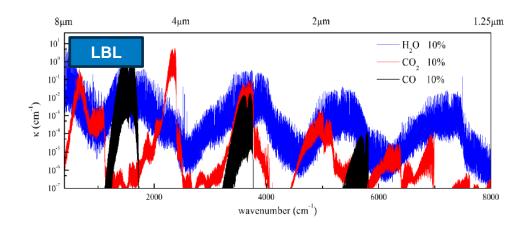
# Complexity / Accuracy / CPU time

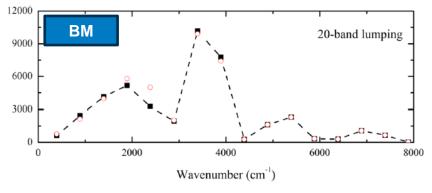
#### Monte Carlo (MC)

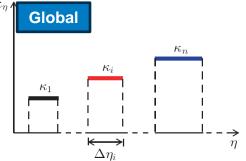
- ✓ Random ray tracing to simulate photons path/interactions with surfaces
- ✓ Complex geometries, non-uniform media and spectrally-dependent properties
- Discrete Ordinate (DO)
  - ✓ FVM discretization of RTE
  - ✓ Optically thin media
- o P1
  - ✓ Projection of I using set of spherical harmonics (avg + 1<sup>st</sup>)
  - ✓ Optically thick media + no significant wall emissions



# Radiation





#### **GAS EMISSIVITY MODEL**


From CH<sub>4</sub> to H<sub>2</sub>: combustion atmosphere composition change, affecting radiation phenomena.

- Total gas emissivity  $\varepsilon = f(k_i)$ : solving 1 RTE at given T for each wavenumber  $\eta$ , and for each species. Repeat for each T
  - √ Very demanding computation!

- Line-By-Line (LBL) Models: 0.01 cm<sup>-1</sup> sampling
- o Band Models (BMs): 10-1000 cm<sup>-1</sup> sampling
- Global Models: average value(s)
  - ✓ WSGGM: weighted sum of grey gases
  - ✓ Grey Gas: single grey gas







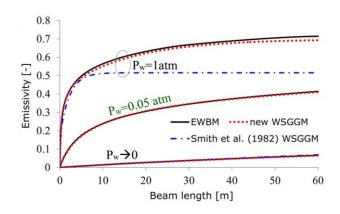
# Radiation



#### **WSGG MODEL**

WSGGM: composition effects described by averaging the emissivity of 3 grey gases + 1 transparent (non-grey behavior of real gases). Temperature-dependence: fitting coefficients  $a_i$ 

- o Smith et al.
  - ✓ Most common in CFD codes


✓ 
$$600 \le T \le 2400 \, K$$
,  $P_{H_2O}/P_{CO_2} = 1, 2, 0.001 \le L \le 10 \, m$ 

Yin et al.

$$\checkmark \quad 600 \leq T \leq 2400 \; K, \; P_{H_2O}/P_{CO_2} = 0.125 \text{: } 4, \; 0.001 \leq L \leq 60 \; m$$

- ✓ Extension toward combustion atmospheres with high H<sub>2</sub>O + industrial-sized equipment
- Depending on the case, the model by Smith et al. is suitable also with H<sub>2</sub>
  - ✓ Significant differences for pure water atmospheres + L>10m
  - ✓ No significant differences at lab-scale cases (L~1 m)

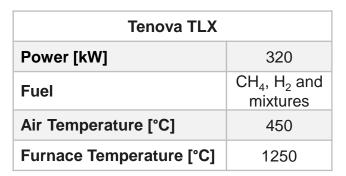
$$\varepsilon = \sum_{i=0}^{N} a_i(T) (1 - e^{-k_i PXL})$$

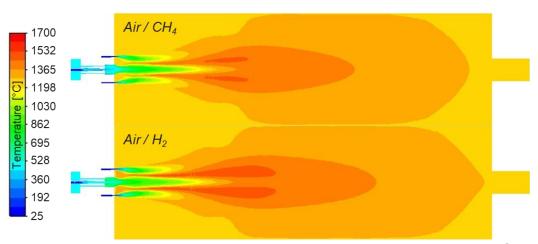


|              | Tgas<br>avg [°C] | Tgas<br>max [°C] | ε avg [1/m] | ε max [1/m] |
|--------------|------------------|------------------|-------------|-------------|
| Smith et al. | 1139             | 1625             | 0.241       | 0.256       |
| Yin et al.   | 1138             | 1617             | 0.264       | 0.288       |

# **Tenova TLX Burner**




#### **CFD ANALYSIS**


- Tenova TLX burner performance assessment with CH<sub>4</sub> and H<sub>2</sub>
- Experimental data available in the next future (preliminary HyTecHeat design)



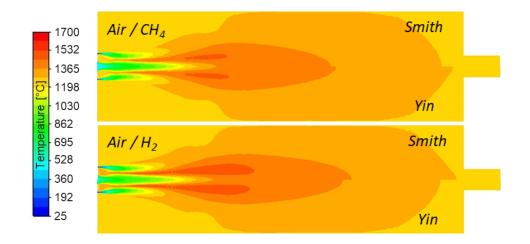
- Diffuse combustion, very uniform temperature field
- H<sub>2</sub> combustion
  - ✓ Increased reactivity: extended core zone
  - √ Flameless technology: no significant temperature increase
- Emissions aligned with other Tenova "H<sub>2</sub> Ready" burners

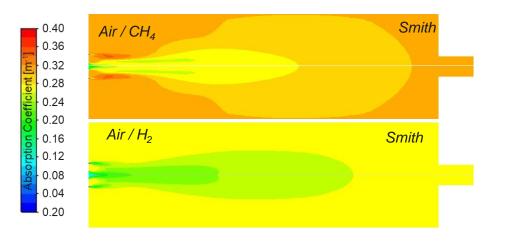
| Furnace Exit                | Air/CH <sub>4</sub> | Air/H <sub>2</sub> |
|-----------------------------|---------------------|--------------------|
| Temperature [°C]            | 1269                | 1272               |
| O <sub>2</sub> [%mol]       | 1.1                 | 1.3                |
| NOx 3% O <sub>2</sub> [ppm] | 33                  | 16                 |





# **Tenova TLX Burner**




#### **RADIATION MODEL COMPARISON**

- WSGGM model: Smith et al. vs Yin et al.
  - ✓ Flame structure, temperature distribution and wall heat fluxes are not affected
  - ✓ Expected higher discrepancies in combustion atmospheres with higher H₂O + industrial-size equipment
- H<sub>2</sub> combustion: increased wall heat flux
  - ✓ Different CO₂/H₂O ratio: lower absorption coefficient

| Average Data                          | Air/CH <sub>4</sub> | Air/H <sub>2</sub> |      |
|---------------------------------------|---------------------|--------------------|------|
| Pook Tomporaturo [°C]                 | Smith et al.        | 1491               | 1491 |
| Peak Temperature [°C]                 | Yin et al.          | 1491               | 1491 |
| Furnace Evit Temperature [°C]         | Smith et al.        | 1269               | 1272 |
| Furnace Exit Temperature [°C]         | Yin et al.          | 1272               | 1268 |
| Ma an a [ma-1]                        | Smith et al.        | 0.30               | 0.27 |
| Mean $\varepsilon$ [m <sup>-1</sup> ] | Yin et al. 0.30     | 0.27               | 0.32 |
| Total Mall Dediction Lloot Flow [kM]  | Smith et al.        | 40.8               | 45.3 |
| Total Wall Radiation Heat Flux [kW]   | Yin et al.          | 40.5               | 45.8 |





### Conclusion



- A CFD model for the simulation of a flameless burner running with any CH<sub>4</sub>/H<sub>2</sub> mixture was successfully developed and applied to the simulation of the Tenova TLX burner
- The analysis confirms the target performances of the Tenova TLX burner
  - ✓ Flameless technology enables the use of H₂ in the steel sector: temperature and emissions control
  - ✓ Unifor temperature distribution, low NOx emissions (in-line with other Tenova "Hydrogen Ready" burners)
- The WSGGM model of Smith et al. can be used also in these specific cases
  - ✓ Lab-scale combustion chamber (low beam length) and low water content
  - ✓ Higher water content / Industrial-size equipment: more general models required

#### Some open points

- ✓ Reliable measurement systems for combustion atmospheres with high vapor content
- ✓ Models enabling full-furnace simulation with reasonable time (kinetic mechanisms, combustion models, pollutant estimation, etc.)

# Acknowledgments



#### **OUR COMMITMENT TOWARD A CLEANER FUTURE**



**Acknowledgements**: The research leading to these results has received funding from the European Union's Research Fund for Coal and Steel research program under grant agreement number 101092087



#### NOxRF (2003-07)

Primary NOx reduction by testing and modelling flameless low NOx burners both high temperature air and oxy combustion



# **CO2RED** (2006-10)

**New combustion** 

technology
allowing a step
change in
environmental
impact of
reheating
furnaces (CO<sub>2</sub>
and NOx)



# **BURNER4.0** (2019-23)

Industry 4.0
enabling
technologies
applied to the
best available
combustion
system for better
performance and
reliability of
furnace



# **HyTecHeat** (2022-25)

**Hybrid** heating

technology
(progressive and increasing H2 usage) in downstream processes





# **H2REUSE** (2023-26)

Highly efficient and sustainable decarbonization of bright annealing process by recovery and reuse of H<sub>2</sub>



# THANK YOU

#### **GREEN SOLUTIONS**

FOR DECARBONIZATION AND SUSTAINABLE TECHNOLOGIES FOR METALS









