### **Towards a Skills Intelligence Framework**

# Mapping of Hydrogen Skills Initiatives in Germany and Austria

Karina Maldonado-Mariscal (TUDO, Germany)

Maldonado-Mariscal | ESTEP 2024, Linz



**ESTEP 2024 Annual Event** 













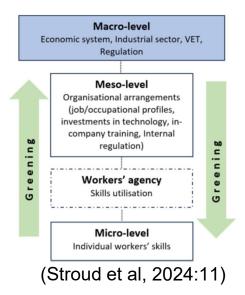









#### 1. Introduction


- The EU has been pushing since 2014 to develop a framework and a narrative for a collective transition to the circular economy in key 4 areas (EC, 2014; Lazarevic et al., 2017):
  - Material circularity
  - Shifting from a consumer to a user-based economy
  - Circular growth and reducing resource consumption
  - Advancing solutions for renewable energy and competitiveness
- There is a high expectation for circular economy (CE) in Europe whereas the implementation of it is very complex -> disruptive innovation require new skills
- Circular economy theory pointed out the need to better understand the different dimensions of it:
  - o social (Ziegler et al., 2023)
  - o political and ecological impacts of circularity (Friant et al.2020)





#### 1. Introduction

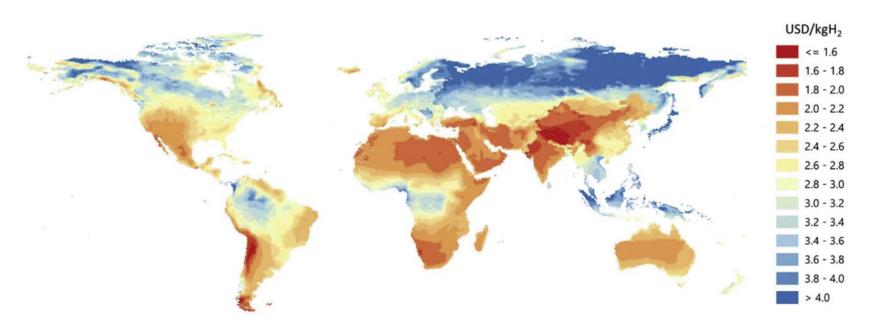
- In response to the growing demand for hydrogen-related skills, European projects focused on green skills.
- However, the idea of greening is so complex that it involves policies at different levels and needs to be understood as such
  - "an emergent property at the macrolevel (either societal, economic or industrial) that becomes pivotal, while considerations on skills policy should be seen through these lenses" (Stroud et al, 2024:3).







#### 1. Introduction


- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

- Objectives in this research:
  - to better understand different hydrogen policies for the steel industry in Germany and Austria
  - 2) to map out the skills and stakeholder, which helps us to better understand where to focus resources and how to build a workforce that is capable of driving the hydrogen economy forward
  - 3) reflect on the potential applications of the skills intelligence framework to hydrogen in the steel industry and its implications
  - 4) To better understand disruptive innovation (hydrogen energy) with respect to skills





#### Hydrogen production costs from hybrid solar and wind plants



(Trattner et al., 2022)





#### 2. Framework

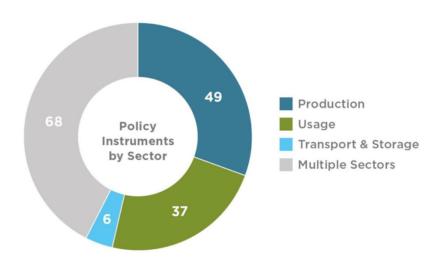
- Steel Industry an innovative case for understanding socioenvironmental transitions
- Hydrogen has been recognised as a pathway to follow for a transition in steel (Quitzow et al., 2023; Wolkinger et al., 2019).
  - This shift requires not only new technological innovations, but also new social and industrial practices
- Skills intelligence in steel (Maldonado-Mariscal et al., 2023:5).
  - Data processing, data preparation, updated information
- Disruptive innovations-> "Research and policy should mind the timing and interaction among phase-out and innovation efforts" (Rinscheid et al., 2021)



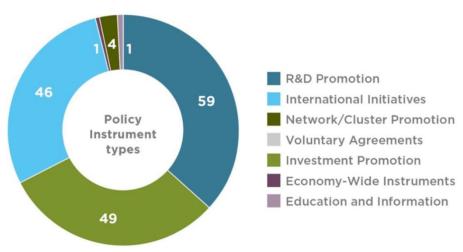


#### 3. Mapping

#### **Projects**


- ✓ Green Skills for Hydrogen blueprint project- skills gaps (Greece, Austria, France, Belgium, Denmark, Spain, Germany, Romania, Bulgaria, Netherlands, Ireland, Estonia, Italy, Poland)(<a href="https://hydrogeneuroperesearch.eu/projects/">https://hydrogeneuroperesearch.eu/projects/</a>)
- ✓ H2FUTURE a European flagship project for the generation of green hydrogen from electricity from renewable energy sources (Austria, Germany, Netherlands) (<a href="https://www.h2future-project.eu/en">https://www.h2future-project.eu/en</a>)
- ✓ H2 for Hamburg (H2H) (Hamburg Green Hydrogen Hub) in steel production (<a href="http://www.h2future-project.eu">http://www.h2future-project.eu</a>)




- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

#### 3. Mapping

## Number of policy instruments by sector of intervention along the hydrogen value chain (Germany)



# Number of policy instruments in the hydrogen sector by instrument type (Germany)



(Quitzow et al., 2023: 8-9)





#### Skills and stakeholders

- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

| Current occupations                                                     | Missing occupations                                              | Future occupations                                                      |
|-------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Managers Experts & Specialists Environmental, HSE Engineers Technicians | Managers Policy & Legal Environmental, HSE Engineers Technicians | Managers Experts & Specialists Environmental, HSE Engineers Technicians |

(European HSS, 2023: 17)





#### Skills and stakeholders

| SKILLS & KNOWLEDGE REQUIRED | OCCURRENCE | %   |
|-----------------------------|------------|-----|
| Production                  | 103        | 11% |
| Hazards                     | 87         | 10% |
| Systems                     | 61         | 7%  |
| Operation                   | 57         | 6%  |
| Maintenance                 | 57         | 6%  |
| Electrolysis                | 57         | 6%  |
| Storage                     | 55         | 6%  |
| Fuel cell                   | 55         | 6%  |
| Transport                   | 44         | 5%  |
| Refuelling                  | 29         | 3%  |
| Legal & permitting          | 23         | 3%  |

- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

Data from:
146 stakeholders
across 23 countries,
interviewed
between November
2022 and March 2023
as part of the Green
Skills for Hydrogen
project





### A transition in the steel industry in Austria: Risk cluster

- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

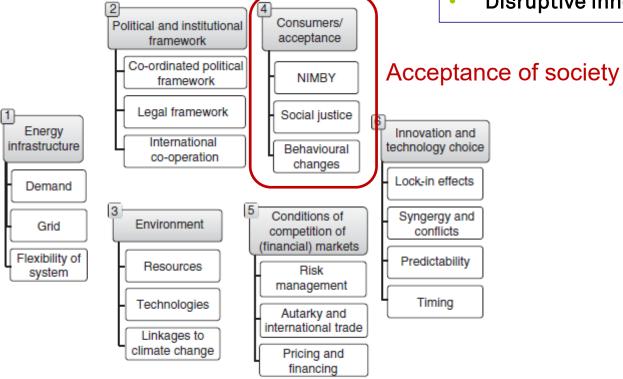



Figure 3.1 Risk clusters for the transition in the iron and steel sector and the energy sector.





#### Skills intelligence framework

- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

#### Skills intelligence according to CEDEFOP is:

"the outcome of an expert-driven process of identifying, analysing, synthesising and presenting quantitative and/or qualitative skills and labour market information. These may be drawn from multiple sources and adjusted to the needs of different users. To remain relevant, skills intelligence must be kept up-to-date and adjusted when user needs change. This requires the expert-driven process to be continuous and iterative."

(Maldonado-Mariscal et al., 2023:5).





#### Skills intelligence framework

- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation
- Steel Industry as a exemplary case study for a socio-environmental transitions

#### Skills intelligence

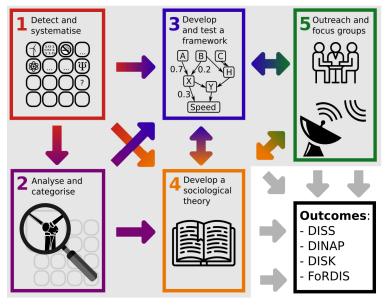
Table 1. Two dimensions of skills intelligence analysis.

|   | Dimensions for the Development of Skill Intelligence |                                                                                                                                    |  |  |
|---|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | Geographical scope                                   | Purposes                                                                                                                           |  |  |
| : | national<br>regional<br>European                     | <ul> <li>for company-specific (individual) skills<br/>demand and supply</li> <li>for policy strategy/policy development</li> </ul> |  |  |

(Maldonado-Mariscal et al., 2023:5).






#### **Disruptive innovation**

disruptive innovation with respect to skills

- Policies
- Skills & stakeholders
- Skill intelligence
- Disruptive innovation

#### **Dimensions**

- renew a business model
- actors, networks
- regulation, policies, institutions
- disruption of a new culture
- speed of disruption
- scope of disruption



(© Maldonado-Mariscal)

- (1) the nature of disruption
- (2) their different speed
- (3) their different levels of social disruption





#### **Key reflections**

- We need to systematically analyse policies, skills and stakeholders at different levels (macro-meso-micro) to develop an integrated skill intelligence strategy in hydrogen
- The steel industry, highlights the urgent need for a coordinated approach to skills development and the need to create ecosystems capable of cocreating in the application of new technologies, new social practices and new competences (Kohlgrüber et al.,2021).
- Wstablishment of a comprehensive skills intelligence framework to ensure that the workforce, industry and society are prepared for the challenges and opportunities of a hydrogen future.
- Integrate an understanding of how disruptive innovation is changing the landscape (research, economy, ecology and social aspects) and how we can better prepare ourselves in terms of skills.





### Thank you for your attention!

Dr. Karina Maldonado-Mariscal

TU Dortmund University, Germany

E-Mail: karina.maldonado@tu-dortmund.de

LinkedIn: karina-maldonado-mariscal