ESTEP SPRING DISSEMINATION EVENT

5-6 JUNE 2025 KRAKOW (POLAND)

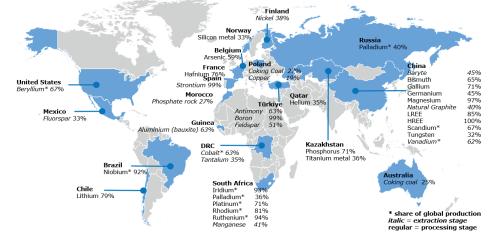
Turning biowaste into **steelgrade biocoal** to decarbonize the steelmaking process

Andrea Salimbeni Head of Unit, RE-CORD

1st Challenge: Decarbonizing the EU steel sector

¹EU JRC Technical report – Greenhouse gas intensities of the EU steel industry and its trading partners, 2022

136 Mt/y Crude steel produced 56 Mt/y fossil coal consumed


183 Mt/y of CO₂ emitted¹ (5% of EU GHG Emissions)

EU ETS regulation – "Polluters pay" principle

2nd Challenge: waste recycling

Source: "European Commission, Study on the Critical Raw Materials for the EU 2023– Final Report"

EU Critical Raw Materials Act

at least 15% of the EU's annual consumption for recycling

Sludge 11 Mil dt/y OFMSW 40 Mil dry t/y

Objectives

Main goal Use biogenic residues to produce biocoal for steel sector

Challenge

Waste streams contains not only in carbon, but also in inorganic contaminants not extracted by conventional processes

Proposed solution

Integrated process based on thermochemical treatment and chemical leaching

RFCS PROJECT- BIORECAST

Bio RECAST

BioRECAST

"BIObased REsidues Conversion to Advanced fuels for sustainable STeel production".

RFCS funded project 11/2023 – 04/2027

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

TRANSINTER PROJECT

TRANSinter

"Valorisation of the sinter plants to support the transition towards Direct Reduction route".

RFCS funded project 07/2023 – 12/2026

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

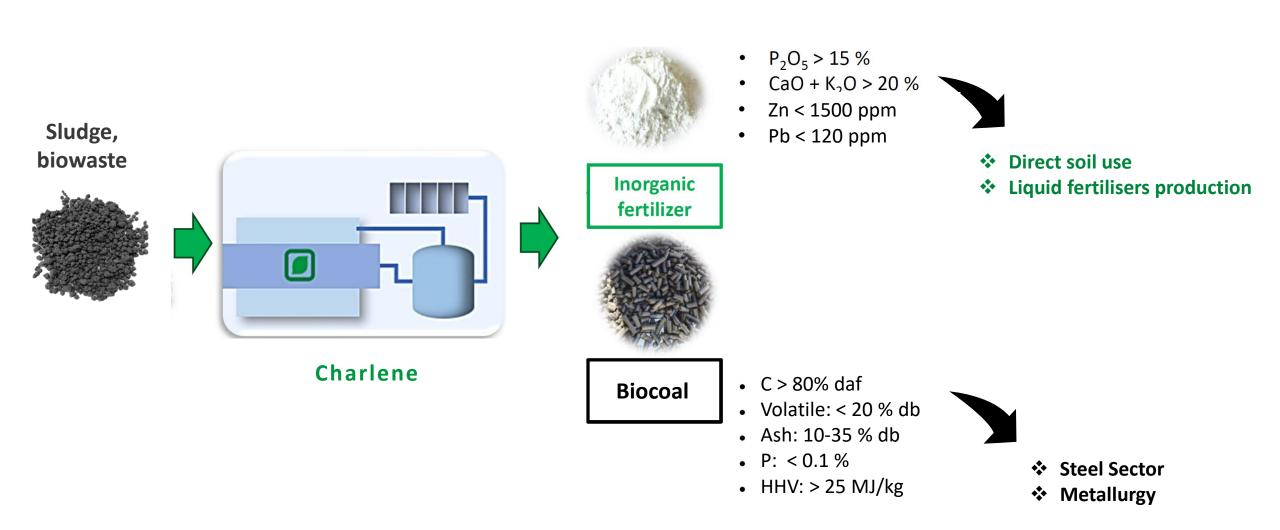
H2STEEL PROJECT

H2STEEL

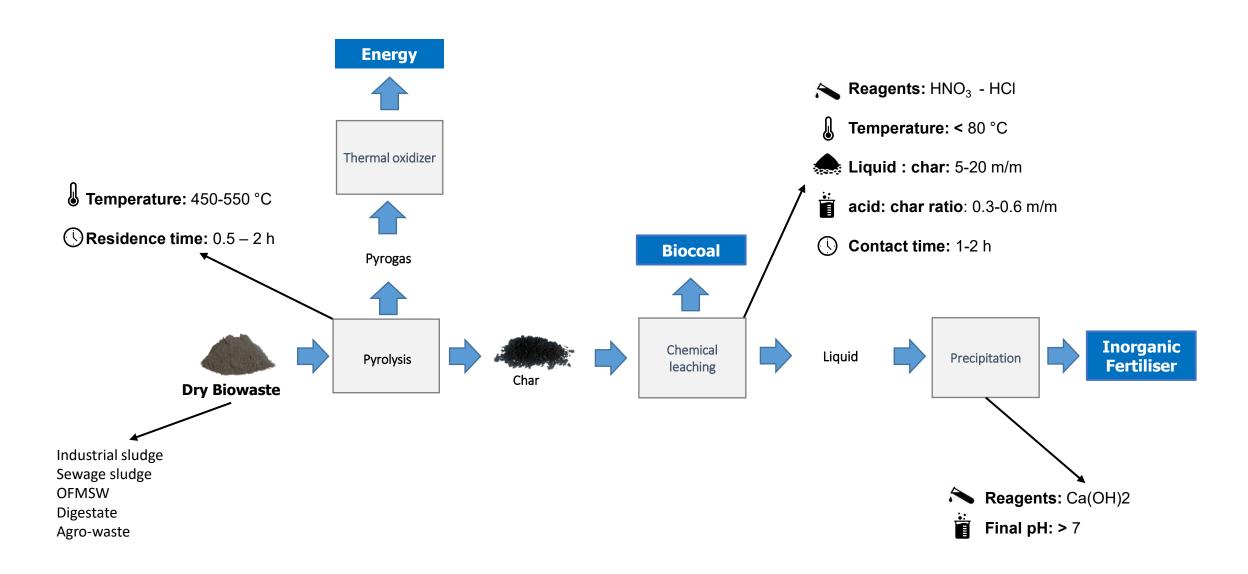
"Green H2 and circular bio-coal from biowaste for cost-competitive sustainable Steel"

EIC funded project 10/2022 - 09/2025

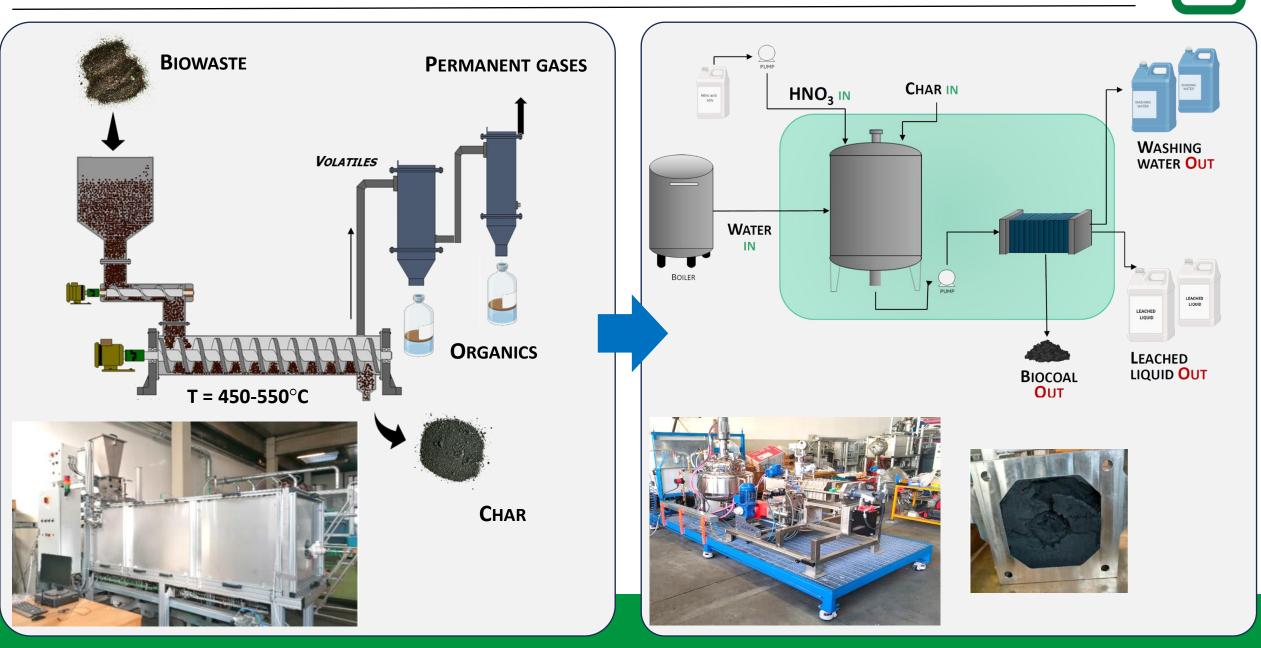
Funded by


the European Union

Funded by the European Union - European Innovation Council -H2STEEL project - Grant Agreement nr.101070741. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Innovation Council. ArcelorMittal

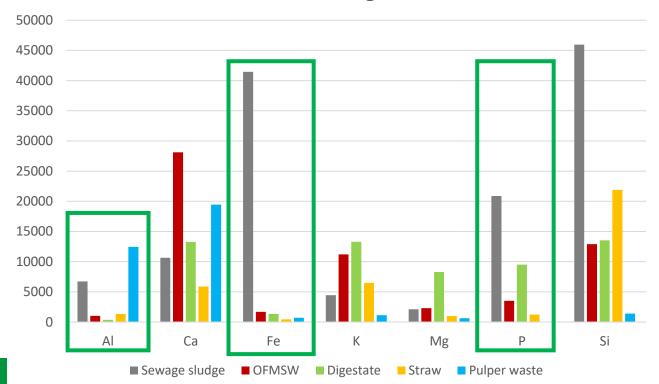


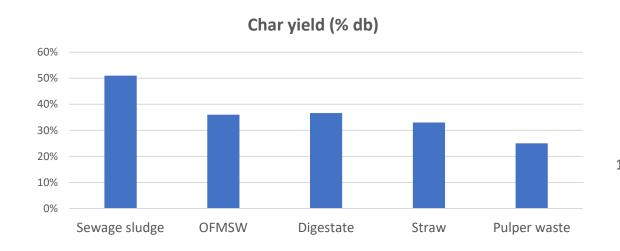
CHARLENE: Selective recovery process


CHARLENE: Selective recovery solution

Biocoal production at pilot scale

METHODOLOGY AND PILOT PLANTS


CHARACTERIZATION OF WASTE STREAMS


Parameter	Sewage sludge	OFMSW	Digestate	Straw	Pulper waste
Ash	27.7%	14.4%	13.8%	8.6%	7.8%
Volatiles	59.2%	71.4%	64.7%	72.7%	82.9%
С	38.0%	44.0%	45.3%	45.3%	63.4%
н	5.3%	5.8%	5.7%	5.8%	8.9%
Ν	6.6%	1.8%	1.5%	0.9%	0.2%
S	1.0%	0.1%	0.5%	0.1%	0.1%

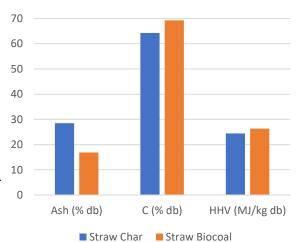
Concentration of inorganic elements

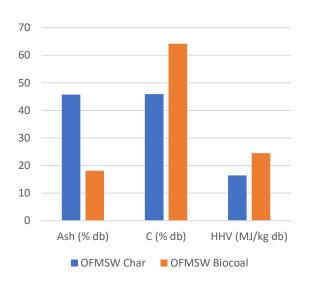
COMPOSITION OF RAW CHAR AFTER SLOW PYROLYSIS

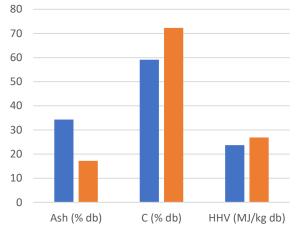
Parameter	Unit	S. Sludge char	OFMSW char	Digestate char	Straw char	Pulper char
Ash	% db	58.4	45.7	35.9	28.5	34.3
Volatiles	% db	17.4	18.1	12	12.2	17.1
С	% db	31.7	45.9	56.8	64.3	59.1
н	% db	1.38	1.3	1.6	2	1.5
Ν	% db	4.8	2.5	1.5	1.3	0.1
S	% db	0.26	0.2	0.3	0.1	0
CI	% db	0.76	1.9	0.5	0.5	2.4
HHV	MJ/kg	12.7	16.4	20.9	24.4	23.7

Concentration of inorganics 100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 0 Al Ca Fe Κ Mg Ρ Si ■ Sewage sludge - Char ■ OFMSW - Char ■ Digestate - Char ■ Straw - Char ■ Pulper char

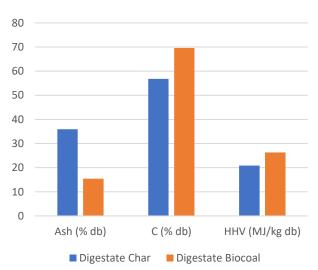
COMPOSITION OF OBTAINED BIOCOALS


80





- C content increase of up to 60%
- P reduced to < 0.3%</p>
- CI reduced to < 0.4%


Parameter	BIOCOAL S. Sludge	BIOCOAL OFMSW	BIOCOAL Digestate	BIOCOAL Straw	Biocoal Pulper
Volatiles	19.5	20.1	18.7	16.9	17.2
Ashes	37.6	18.1	15.4	16.9	14.8
С	42.0	64.2	69.6	69.3	72.3
Н	1.5	2.0	1.9	2	1.5
Ν	6.6	4.7	2.7	2	0.1
S	0.1	0.2	0.4	0.1	0
CI	0.3	0.1	0.01	0.02	0.7
HHV	16.3	24.5	26.3	26.3	26.9

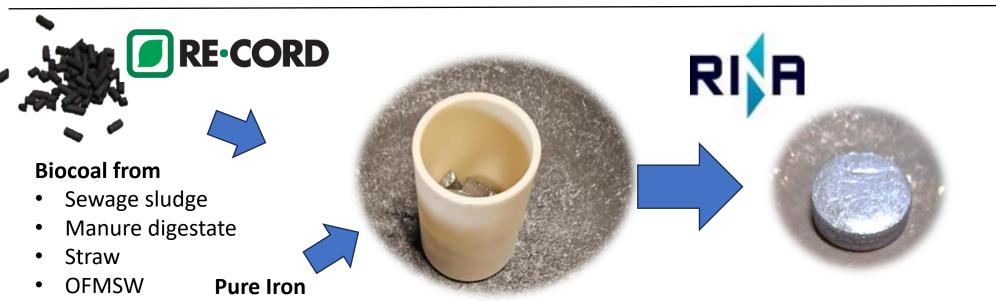
Pulper Char Pulper Biocoal

Biocoal compactation for sintering process

BIOCOAL PREPARATION AND TESTING

- > 50 kg biocoal powder dry mixing with starch (3-4% db)
- 2. Hot water added (> 70°C)
- 3. Pelletization performed in a 30 kg/h unit
- 4. Wet pellet dried in oven at 105°C overnight

RESULTS

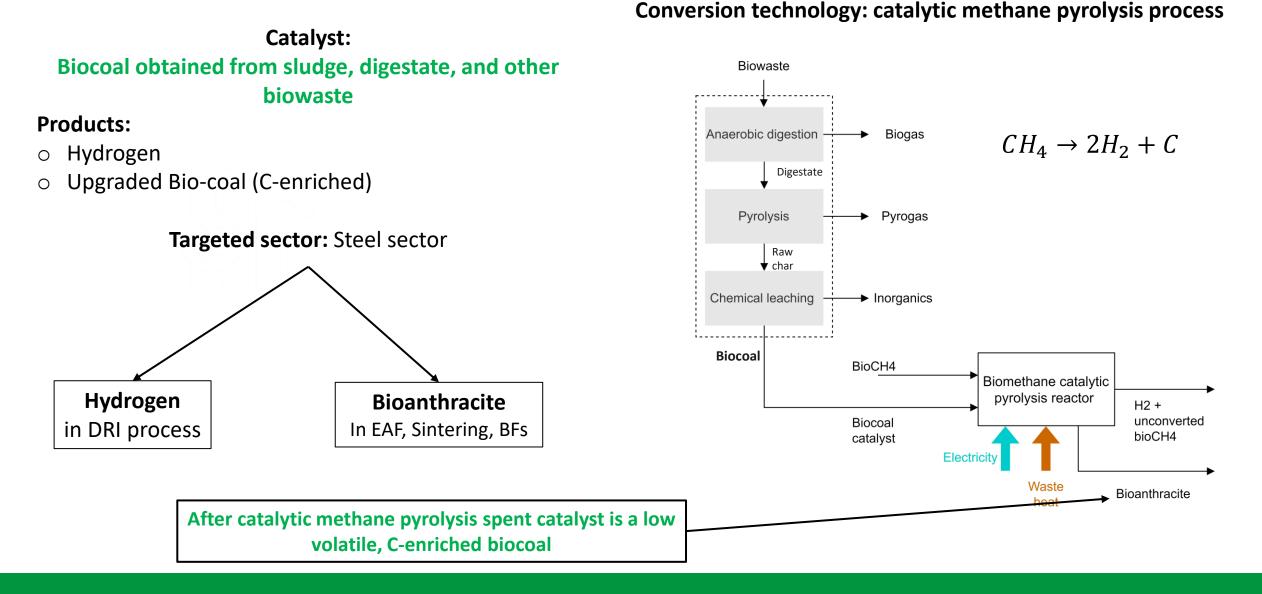

- ✤ Water resistant
- ✤ High durability
- No dust formation during storage

Biocoal use as carburizer

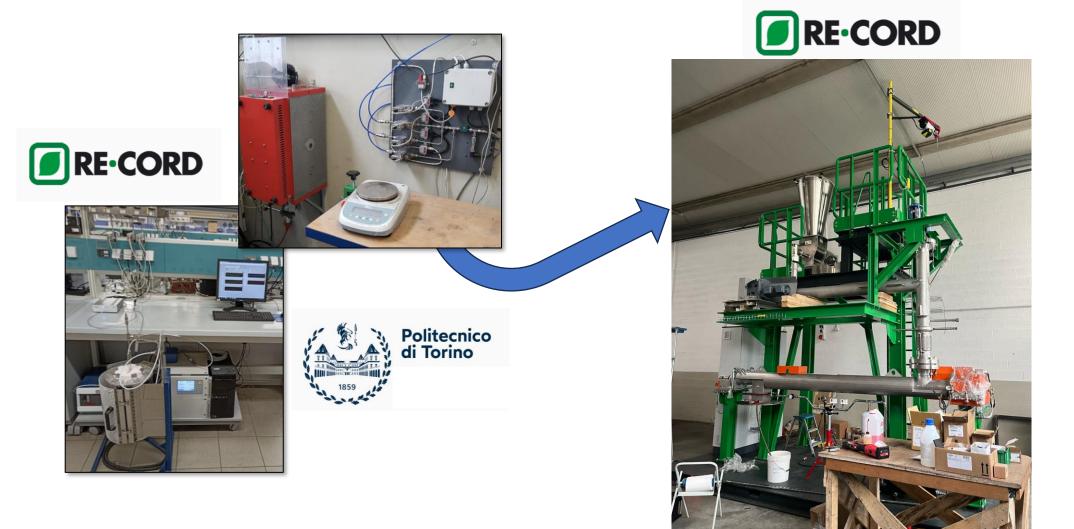
BIOCOAL CARBURIZATION TEST

Biocoal origin	Mass Fe (g)	Carburazing C (%)	C fix in biocoal (%)	C stoichiometric (g) to add	Biocoal to add (g)	Added biocoal (30% more)
OFMSW	150	3	63.4	4.5	7.10	10.14
Digestate	150	3	64.2	4.5	7.01	10.01
Straw	150	3	65	4.5	6.92	9.89
Sludge	150	3	42	4.5	10.71	15.31

Bio RECAST


RESULTS OF CARBURIZATION TEST

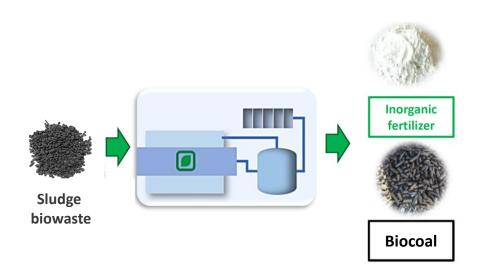
							REC
Melting test N.	C (%)	S (%)	N (%)	O (%)	Added biocoal (g)	Pure Fe (g)	C in the hot metal (%)
1 (Biocoal OFMSW)	5.17	0.013	0.0046	0.011	17	150.25	69.2
2 (Digestate)	3.81	0.022	0.0059	0.0055	20.02	150.05	41.4
3 (Straw)	5.12	0.0085	0.0023	0.0068	20.15	150.45	55.4
4 (Sludge)	2.05	0.018	0.0021	0.0076	20	150.5	35.1


<u>Bio</u>

Biocoal use as catalyst in catalytic methane pyrolysis

H2STEEL in a Nutshell

H2STEEL: from lab tests to POC



HOMER

Continuous biocoal based catalytic methane pyrolysis unit

CONCLUSIONS

- A 95-99% P extraction efficiency is obtained
- Sludge ash is extraction can be by up to 90%
- Biocoal has reduced reactivity at high Temperatures
- Silica is not removed by the process
- Calorific value is increased from 15-20 to 24-27 MJ/kg
- Leaching process remove PAH, Cl, and > 50% ash from char
- Nutrients recovery improve the economic feasibility and sustainability

FOLLOW UP

3 tons char production in 100 kg/h rotary kiln

PYROK rotary kiln

> 1.3 tons biocoal production in a 500 lt/h leaching unit

ADELE leaching unit

RE-CORD

Renewable Energy COnsortium for Research & Demonstration

Thanks for the attention!

Andrea Salimbeni, PhD

Head of Unit | Raw materials & carbon recycling

andrea.salimbeni@re-cord.org

www.re-cord.org