ESTEP SPRING DISSEMINATION EVENT

5-6 JUNE 2025 KRAKOW (POLAND)

Hubs for Circularity in Europe: A Focus on Stakeholders

Dr. Karina Maldonado-Mariscal & Dr. Michael Kohlgrüber

(TU Dortmund)

1. Research Problem

- The EU has been pushing to develop a framework for a collective transition to the circular economy (EC, 2014).
- Some actions towards a circular economy are:
 - EU Competitiveness Compass (European Commission, 2025)
- The role of stakeholder engagement is underexplored (Fobbe & Hilletofth, 2023; Vladimirova et al., 2018; Hein et al., 2017; Mortensen et al., 2023).
 - Limited attention to social justice and the challenges of stakeholder engagement in circular processes (Marin et al., 2018).
- Circular economy theory pointed out the need to better understand the different dimensions:
 - o social (Ziegler et al., 2023)
 - o political and ecological impacts of circularity (Friant et al.2020)

technische universität dortmund Fakultät Sozialwissenschaften

2. Context and motivation

- This project includes four circularity hubs in Germany, Spain, Netherlands, and Turkey (EU project IS2H4C - <u>https://is2h4c-project.eu/</u>).
- Three main goals of this research:
 - a) Demonstrating near commercial scale IS through innovative technologies
 - b) Ensuring sustainability covering people, planet and profit dimensions
 - c) Novel financial schemes and social innovation approaches

This project has received funding from the European Union's HORIZON Research and Innovation Actions programme under grant agreement number 101138473

Maldonado-Mariscal and Kohlgrüber | ESTEP Dissemination, Krakow, June 2025

Overview of Involved hubs

Hubs4Circularity H4C provide spaces where diverse actors, such as businesses, governments, researchers, and civil society collaborate to accelerate the Circular Economy (CE) transition (<u>https://is2h4c-project.eu/</u>).

Maldonado-Mariscal and Kohlgrüber | ESTEP Dissemination, Krakow, June 2025

3. Methods

- Stakeholder engagement in European circularity hubs through participatory research and co-creation, living labs and expert discussion panels. More concretely:
 - a) Stakeholder mapping and needs/relationships
 - b) Identifying non-technological key challenges
 - c) Good practices of societal engagement

Based on e.g. desk research, questionnaires and semi-structured interviews with businesses along the hubs, citizens living in the vicinity of the hubs, policy makers

tu technische universität dortmund Fakultät Sozialwissenschaften

4. (Preliminary) Findings

Non-technological aspects of H4C

Maldonado-Mariscal and Kohlgrüber | ESTEP Dissemination, Krakow, June 2025

Key challenges for stakeholders

	German Hub	Dutch Hub	Basque Hub	Turkish Hub
Regulatory uncertainties	Regulation as uncertain driver for SAF demand	Lack of clear policies on hydrogen production, storage, and distribution	Long permitting processes, uncertain changes of legislation	Frequently changing, complicated
Economic challenges	Market and investment barriers	Limited financial incentives or subsidies	High capital need and operational expenditures	Market and investment barriers
Infrastructure	Infrastructure for hydrogen and renewable energies	Integrating hydrogen, electricity, and gas networks	Needed for H ₂ & CO ₂ transport, upgrade of electrical grid	
Societal and community relations	Societal impact of SAF	Concerns over the safety of emerging technologies	Social resistance against waste facilities, renewable energy installations, CO_2 storage	Acceptance and skilled labour as key challenges
Environmental effects	Which CO2 sources are acknowledged?			

Key challenges for stakeholders

	German Hub	Dutch Hub	Basque Hub	Turkish Hub
Regulatory uncertainties	Regulation as uncertain driver for SAF demand	Lack of clear policies on hydrogen production, storage, and distribution	Long permitting processes, uncertain changes of legislation	Frequently changing, complicated
Economic challenges	Market and investment barriers	Limited financial incentives or subsidies	High capital need and operational expenditures	Market and investment barriers
Infrastructure	Infrastructure for hydrogen and renewable energies	Integrating hydrogen, electricity, and gas networks	Needed for H ₂ & CO ₂ transport, upgrade of electrical grid	
Societal and community relations	Societal impact of SAF	Concerns over the safety of emerging technologies	Social resistance against waste facilities, renewable energy installations, CO_2 storage	Acceptance and skilled labour as key challenges
Environmental effects	Which CO2 sources are acknowledged?			

to technische universität dortmund Fakultät Sozialwissenschaften

Overview of the Basque Hub

Location:

- Basque country
- Characterised by Ell(steel, pulp&paper, cement, lime, foundry, oil refinery)

Focus of Industrial Symbiosis (IS):

- Oxycombustion and use of green hydrogen
- CO₂ capture & utilisation (CCU) and carbonation of steel slugs: adsorption technologies for CO₂ capture from lime production
- E-methanol production: CO₂ is converted into synthetic fuels

tu technische universität dortmund Soun Fakultät Sozialwissenschaften

Stakeholders in the Basque Hub

Basque Hub, Sidenor:

Main objectives:

- Analysis of the synergies with the rest of the partners to identify the possible reduction of raw materials or wastes generation.
- Identify the energy demand and/or heat excess.

Sidenor

OXY-COMBUSTION with HYDROGEN

Current heating: NG + air

Industrial validation of the burner which uses $\rm H_2$ and $\rm O_2$ during the preheating of the ladle refractories.

NG + O_2 Expected savings around 50% in the gas consumption

Complete avoidance of natural gas consumption

5. Preliminary conclusions and next steps

Conclusions:

- Social resistance towards:
 - a) new renewable energy installations
 - b) waste management, and
 - c) CO2 storage
- High investments cost
- Regulatory policies (e.g. as overly complex and restrictive which slow down the implementation of industrial symbiosis)
- Public-private collaboration is essential in this hub

Next steps:

- We are developing indicators for stakeholder engagement
- Governance for continuous stakeholder involvement by hubspecific living labs
- Establishing an expert discussion panel

Thank you for your attention!

Dr. Karina Maldonado-Mariscal TU Dortmund University, Germany E-Mail: <u>karina.maldonado@tu-dortmund.de</u>

Dr. Michael Kohlgrüber TU Dortmund University, Germany E-Mail: <u>michael.kohlgrueber@tu-dortmund.de</u>