ESTEP SPRING DISSEMINATION EVENT

5-6 JUNE 2025 KRAKOW (POLAND)

TransZeroWaste - Upgrading of low-quality iron ores and mill scale with low carbon technologies

Gerald Stubbe, VDEh-Betriebsforschungsinstitut GmbH (BFI)

Situation - Transition of the steel industry towards climate-neutrality

Current situation

- 95 % internal recycling within BF-BOF-route ٠ via sinter plant
- No internal recycling of EAF dust and a major amount of landfill requirement

Due to transition (climate-neutrality 2050)

- Cut-off current recycling within BF-BOF-route • for over 6 million tons per year (EU27)
- Occurrence of new by-products with ٠ unknown compositions and quantities

Need for new options for by-products processing

- Development of suitable recycling technologies to avoid landfill and recuperate valuable secondary raw materials
- Enlarge potential raw material basis for ٠ ensuring a sufficient material supply

GA No 101091960

State of the art

- organic-/non-organic binders for pelletising/briquetting
- Zn is limiting reuse of iron containing materials, current 2-20 wt.-% Zn → landfill
- Oil is limiting reuse of oily scale (aim < 0,3 %)

Technical challenges

- Development of low-CO₂technology for reuse-potential
- Unknown potential for minimum CO₂-footprint and hot behaviour in DR-plant

Key objectives TransZeroWaste

- Upgrading low-grade iron ore by combining with iron-rich by-products
- Development of innovative techniques to produce high quality pre-material for current & future low CO₂-production routes
- Separation of disturbing components from by-products to replace scrap
- Development of the technological basis and digital tools supporting the transition towards net-zero-waste in the European steel industry

Technological apporaches and Innovations

Main technological approaches

Cold pelletisation and briquetting for direct use in existing and future steel works

Hot pelletisation with microwaves for upgrade of low-quality iron ores *and iron-containing byproducts* to increase the content of metallic iron and decrease the iron oxide content

Hydro-metallurgical treatment for removal of impurities from iron containing oily mill scale (casting, hot rolling)

Development of technological basis and **digital tools** supporting the transition towards zero waste in the European steel industry

Innovation / Progress beyond state-of-the-art

Use of low carbon and "green" binders applied to new by-products and its combinations / properties. Optimum agglomerate properties for use in DR-process or EAF

Low-CO₂ parallel de-zincing and reduction of Fecontaining by-products. New concept of coupling allowing a larger scale up and efficiency

Low-energy and -CO₂ emission process compared to thermal treatment methods including cleaning agent recovery -> opening reuse potential for oil sludges as iron ore substitute

First time application of decision support tool in the steel industry based on life cycle assessment (LCA), life cycle costing (LCC) and circularity indicators – aim: identification of most sustainable processing routes for materials with different Fe contents

Funded by the European Union GA No 101091960

Cold pelletisation and briquetting for direct use in existing and future steel works

Process development: → cold pelletisation, → cold briquetting for use in - DR-processes (e.g. shaft furnace) - EAF-/BF-/BOF as low-CO₂-substitute

Cold pelletisation and briquetting for direct use in existing and future steel works

Briquetting trials (BFI)

Screening of binders (13x):

Best performing binders: sodium-waterglass, cellulose, bentonite (up to 37 MPa)

Software-based Design of Experiments (DoE)

- Two by-products & two binders
- Highest influence on compression strength: binder type & amount; curing time; pressing force
- Low-/No significant influence: material type, particle size distribution/grinding

Main conclusions:

Cold compressive strength of briquettes close to requirements of iron ore pellets (35 MPa)

Briquetting results: Response contour diagram of cold compression strength for one by-product (function of: press force, binder ratio, curing time, binder type)

Cold pelletisation and briquetting for direct use in existing and future steel works

Pelletising trials (BFI)

- Two by-products & two binders (bentonite, cellulose)
- Cold bound \leftrightarrow burned (1250 °C)

Main conclusions:

- Low compression strength for pelletisation, even after burning (< 5 MPa, insufficient for use in DR-Process or EAF)
- Small differences between the different by-products

Next steps briquetting & pelletising

- Continuation of trials for optimization of briquetting and pelletisation procedure and mixes
- Use of de-oiled mill scale sludge samples
- Verification of lab results in technical scale and field trials (CSIC, CELSA)

Compression Test

Pelletising results: Cold compression strength, two by-products & two binders

Cold pelletisation and briquetting for direct use in existing and future steel works

Hot tests of briquettes (GIT) Main results:

- Thermoplastic properties: Wide softening range for briquettes bound with cellulose → possibly disadvantageous for shaft furnaces
- Reducibility Test (ISO 11258): Repeatability of reduction degree needs to be improved

Next steps:

Improvement of procedure for

- minimized material consumption
- higher repeatability and accuracy
- ightarrow continue improved hot tests

Thermoplastic Properties Test

Reducibility Test (ISO 11258)

Hot pelletization with microwaves New concept of rotary applicator

Upgrade the hot pelletizing with microwaves

- Development of a new process using the DESTINY microwave applicator concept (CNT with support of BFI, K1, UPV)
- Development of a new concept of tube as applicator for large scaling up capacity (CNT, UPV)
- Innovative microwave treatment concept for hot pelletizing supported by findings of pre-trial investigations for adaptation, optimization and further enlarged potential (CNT, UPV, DH)
- Demo trials will be performed at DH with CNT and BFI

DESTINY BASED Ceramic tube crossing the MW cavity TransZeroWaste UPGRADING Metallic tube is the MW cavity Goal: 30-70 kg/h

Hot pelletization with microwaves New concept of rotary applicator

Capacities of each concept of applicator

Hot pelletization with microwaves Stationary trials

- Free metallic iron formation when carbon
- Samples with high content in ${\rm SiO}_2$ and CaO generate Fespinels trapping the Fe
- All samples treated containing enough reductant are suitable for reduction
- Oil is a reductant agent. Gas analysis is still pending in oil containing wastes

Ca-rich phases (Fe-Ca spinels) Free iron disseminated

Hydro-metallurgical treatment for removal of impurities - aim / cleaning agent selection / results

- Situation: no or limited metallurgical reuse of oily iron carriers as scale and sludge due to oil contents
- Aim: Removal of oil and grease for a mandatory step for metallurgical reuse oil contents < 0.1 to 0.3 wt.-%
- Investigated sludges: continuous casting line (oil-content: 4 6,5 wt.-%), hot rolling mill (oil content: 3,5 wt.-%)
- Evaluation criteria for selection: oil removal efficiency, cleaning agent dose/costs, composition, recoverability

Cleaning agent	Group	Compound	pH (value)	Water solubility
1	Tenside	Alkoxylate	5,5 - 8,5	Dispersible
2	Non-ionic tenside	Polyethylene glycol, propoxylated	7	Insoluble
3	Tenside	EDTA + etidronic acid	8,7	Fully water-miscible
4	Tenside	Oleylamine	5 – 7	Aqueous emulsion
5	Solvent	Monoterpen	4,1	Fully water-miscible
6	Solvent	Mixture alcohol ethoxylates, amine	k.A.	insoluble
7	Inorganic, alkaline	Combination potassium - tenside	k.A.	Fully water-miscible
8	Inorganic, alkaline	Combination sodium, tenside, leach	12,7	Fully water-miscible
9	Inorganic, acidic	Citric acid	4,3	Fully water-miscible

Loaded cleaning agent 6 (left) and 8 (right)

> Determined: solvent (alcohol mixture) or inorganic alkaline (mixture sodium, tenside, leach) for both sludges

> Oil removal agent 6: 76% / 86% - oil removal cleaning agent 8: 68% / 72% (hot rolling sludge / CC line sludge)

Dosage: 9.8 / 15 mg/g or oil 4.4 / 9.3 mg/g oil (hot rolling sludge / CC line sludge)

Parameter optimisation (hot rolling sludge)

- Increase of oil removal from 71% to 82% by
 heating cleaning agent from 20° to 60°C
- Increase of oil removal to 93% by two-stepwashing
- No improved de-oiling by intake of ultrasound

Cleaning agent recovery

- Under pressure filtration with chemical resistant ceramic flat sheet membranes suitable
- Flux: 80 L/ m²*h with Al-oxide membrane
- Cleaning by back wash and period drain
 sufficient

Field trial in preparation

- De-oiling of sludge
- Following metallurgical treatment in H₂-direct reduction
- Final metallurgical reuse in operational EAF

Pilot plants: Magnetic separator (left) Ceramic flat sheet filtration (rigth)

Environmental, Circularity and Economic Evaluations

3 Sustainability Aspects

Life Cycle Assessment (LCA)

- Environmental footprint of developed technologies.
- Environmental evaluation of the overall steel production.

Life Cycle Costing (LCC)

- Economic footprint of developed technologies.
- Use of several indicators (LCC, NPV, ...).

Circularity Indicators (CIs)

- Show how much products are recycled
- Waste reduction & value maximization.
- Recycling score

Support decision tool development: overview – inventory definition

	Life Cycle Inven	itory		Download
on:	A guided inventory creation for each	step of the production		
lity indicators	Where is the plant located?	Germany		
ture	What is your steel production pe	er year? Amount ton stee	el / year ,	
	Inventory per process			
	Coking Pelletiz	ing Sintering	Blast furnace	
			En anna la mate	
	Material Inputs		Energy inputs	
ition	Iron ores	Amount ton / year	Electricity	Amount MWh/ year
ition	Material Inputs Iron ores Pellets	Amountton / yearAmountton / year	Electricity Natural gas	Amount MWh/ year
ition	Material Inputs Iron ores Pellets Anthracite	Amountton / yearAmountton / yearAmountton / year	Electricity Natural gas	Amount MWh/ year
iition sely the	Material Inputs Iron ores Pellets Anthracite Coke	Amountton / yearAmountton / yearAmountton / yearAmountton / year	Electricity Natural gas	Amount MWh/ year Amount m3/ year
iition sely the ted procedure.	Material Inputs Iron ores Pellets Anthracite Coke Outputs	Amountton / yearAmountton / yearAmountton / yearAmountton / year	Electricity Natural gas	Amount MWh/ year Amount m3/ year
hition Sely the ted procedure.	Material Inputs Iron ores Pellets Anthracite Coke Outputs Pig iron	Amountton / yearAmountton / yearAmountton / yearAmountton / yearAmountton / year	Electricity Natural gas	Amount MWh/ year

Development of an application:

- Integration of 3 sustainability indicators
- Scenarios comparison
- Support awareness and future investments

- Example of case study definition
- Inventory creation
- Possibility of defining precisely the production route with assisted procedure.

Support decision tool development: overview – scenarios comparison

Scenarios comparison

- Results of each scenario are presented
- Comparison between multiple scenarios is also possible

Next steps:

- Calculation of the environmental, economic and circularity aspects (LCA, LCC, CIs)
- Development of the tool
- Contribution to carbon-neutral targets & circular industrial value chains

Thank You!

Gerald Stubbe, Martin Hubrich, Kersten Marx (VDEh-Betriebsforschungsinstitut GmbH),

Angel López (CEINNMAT INNOVACIÓN INNCEINNMAT SL),

Alicja Szemalikowska (Łukasiewicz Research Network – Upper Silesian Institute of Technology, GIT),

Susanne Bethlehem-Seidel (Aktien-Gesellschaft der Dillinger Hüttenwerke)

Sébastien Zinck, Maura Camerin (Luxembourg Institute of Science and Technology LIST)

Funded by the **European Union**

HORIZON-CL4-2022-TWIN-TRANSITION-01 program under grant agreement No 101091960

TransZeroWaste

Transzerowaste

ESTEP Spring Dissemination Event 2025, 5. June 2025, Krakow