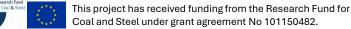
ESTEP SPRING DISSEMINATION EVENT

5-6 JUNE 2025 KRAKOW (POLAND)

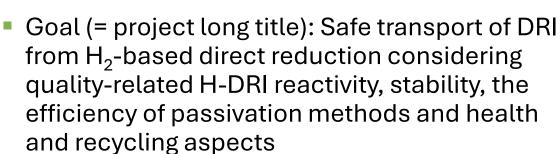
Safe H-DRI

Safe handling and transport of hydrogen-based direct reduced iron for a decarbonisation of the steel industry


> Melanie Leitner (K1-MET)

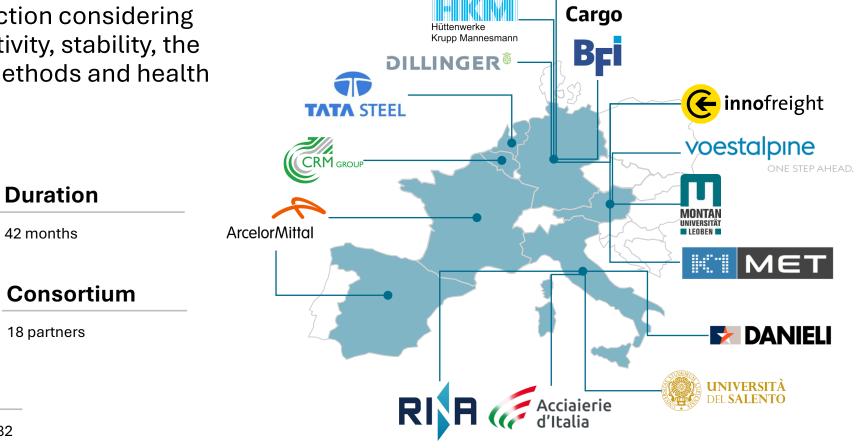
metallurgical competence center

Start date


Coordinator

K1-MET (Austria)

1.10.2024


Programme

RFCS, GA n. 1011150482

42 months

18 partners

DB

Project overview Key facts

Decarbonising primary steel production The role of H-DRI

- Scrap alone cannot meet global steel demand
 - High-tech steel grades require purer inputs than scrap can in some cases offer
 - DRI dilutes impurities present in lower grades of scrap
- Most available iron ores not of sufficient quality for use in DR-based EAF steelmaking
- To decarbonise the steel industry: production of DRI with hydrogen (H_2)
- H_2 use reduces CO_2 emissions, but impacts:
 - Product properties
 - Resulting performance in downstream processes
 - Final steel quality

Decarbonising primary steel production The role of H-DRI

- Rising demand for H₂-based DRI (H-DRI) will increase transport by rail and sea
 - Not all DRI will be produced within the EU or directly at steel production sites
- DRI with high metallisation degree (e.g., from NG/H₂-based DR processes) is reactive, posing safety risks during transport and storage
 - Exothermic reactions (e.g., self-heating in humid conditions)
 - Reactions with moisture produce hydrogen and oxygen, increase explosion risk
- Knowledge gaps remain regarding:
 - H-DRI stability regarding cracks and fines formation
 - Reoxidation behaviour during H-DRI transport with related handling
 - Recycling of fines formed during transport

Develop a sustainable and efficient logistic chain for H-DRI

Adapt **container design** and tailor for **loading, transport and storage processes** to specific requirements of H-DRI

Enhance the **use of low-grade iron ores** and **resulting fines** to produce H-DRI with 100% H_2 or mixtures of H_2 and NH_3

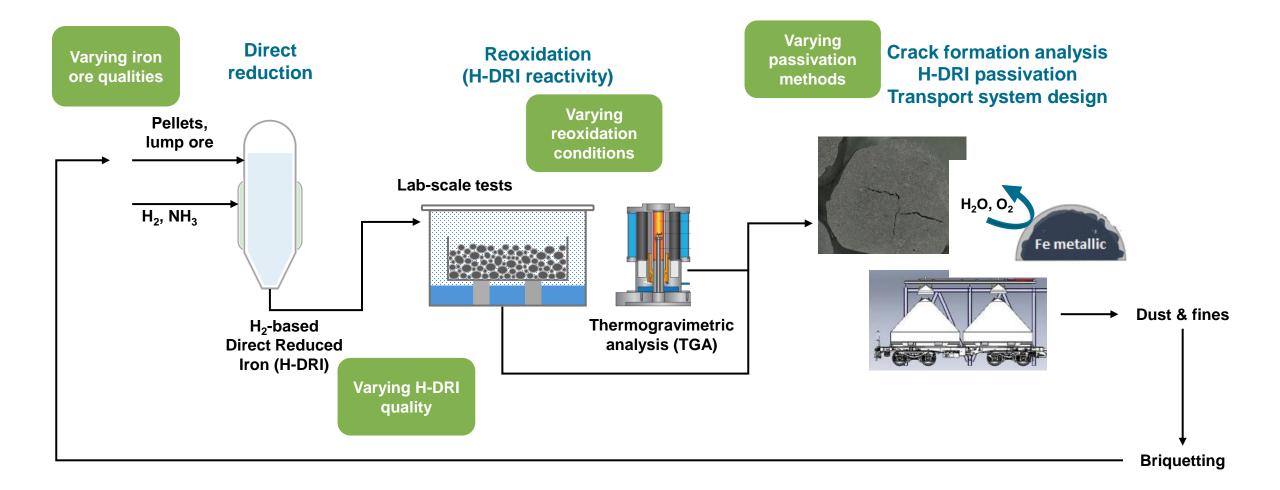
Examine **reoxidation behaviour** under **transport/storage conditions** like humid air, saltwater, temperature variations

Quantify **crack and fines formation** during handling to assess **reuse potential** and mitigation strategies

Ensuring safety and support standardisation

Identify critical safety parameters by linking variations in H-DRI quality (metallisation, gangue content, particle size) to potential hazards and risks

Examine and test **passivation methods to reduce risks** like self-heating, ignition, local explosions during transport and handling


Assess **downstream impact on** loss of metallisation, particle sizes and dust composition

Support transport system **standardisation** and **update exiting transport guidelines** based on new knowledge regarding H-DRI behaviour

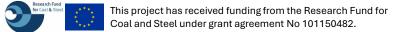
Concept of the project Highlighting the relevant part of the H-DRI chain

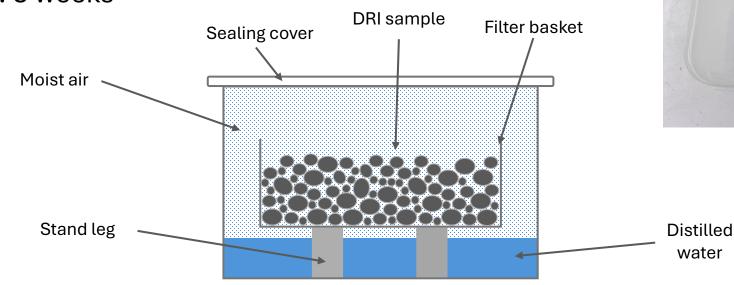
This project has received funding from the Research Fund for Coal and Steel under grant agreement No 101150482.

Improve safety

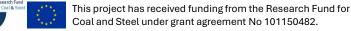
H-DRI production and reoxidation Using different ore qualities and agglomerated resulting fines Lab-scale reoxidation trials under defined Process analysis and quality evaluation (\mathcal{N}) conditions and in real environment Chemical analysis Determination of metallisation loss Physical properties **Examination of H-DRI stability** Morphological structure and phase identification Correlations between H-DRI quality, dust formation, hazards, and risks Determination of breaking behaviour **Passivation techniques** and crack formation Coatings and controlled aging Minimise H-DRI reactivity

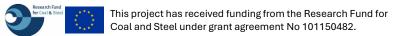
Recycling and circular economy


Reusing and reintegrating fines into the production process Reducing material losses Supporting zero-waste goals


Experimental activities:

- Selection of pellet grades used for experiments (DR and BF grade)
- Round robin test for quality assurance, started with agreed methodologies (ICP, XRF, TGA,...)
- Adaption of H-DRI breakage test facility ongoing
- First practical experience with new designed TGA plant for reduction / passivation
- H-DRI market analysis and stakeholder consultation started

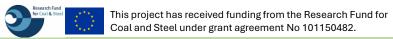

- Preliminary tests with commercial DRI
- Box 1: dry air at room temperature
 - Reference test
- Box 2: moist air above deionised water at room temperature
- Test duration: 8 weeks



Establishment of communication platforms:

- Website launched! (<u>https://safe-h-dri.eu/)</u>
- LinkedIn page created! (<u>https://www.linkedin.com/company/safe-h-dri-project/</u>)

Establishment of communication platforms:


- Website launched! (<u>https://safe-h-dri.eu/)</u>
- LinkedIn page created! (<u>https://www.linkedin.com/company/safe-h-dri-project/</u>)

What's next?

- Finalisation of reduction conditions for H-DRI production
- Definition of reoxidation conditions and experimental set-ups
- Reoxidations tests in lab-scale
- Commissioning of test rig and performing first tests with H-DRI breakage test facility

metallurgical competence center

Thank you!

Melanie Leitner

Melanie.Leitner@k1-met.com +43 664 88 32 03 18

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 101150482.

Safe H-DRI

Safe handling and transport of hydrogen-based direct reduced iron for a decarbonisation of the steel industry

ESTEP Spring Dissemination Event

Melanie Leitner (K1-MET GmbH) 05. June 2025

