<u>SESSION 2: 9:30-9:50</u>

ESTEP workshop SecCarb4Steel

Preparation and use of biogenic and non-biogenic secondary carbon carriers (SCC) in processes for iron and steelmaking

A techno-economic and environmental assessment of coke-making with non-recyclable waste plastics in Europe: Evaluation of current and future market conditions

Mario Ávila¹, Inge Bellemans¹, Sofie Verbrugge², Kim Verbeken¹

¹ Department of Materials, Textiles and Chemical Engineering, Research Group Sustainable Materials Science, Ghent University, Technologiepark 46, 9052 Ghent, Belgium
² IDLab – UGent/imec, Technologiepark 126, 9052 Ghent, Belgium

ESTEP · Av. de Cortenbergh, 172 · B-1000 Brussels · Tel. +32 2 738 79 43 · secretariat@steelresearch-estep.eu · Disclaimer

European Green Deal

orea for 55

Energy Demand and Intensity in Iron and Steel 2000–2018

https://climatescience.org/advanced-steel-climate

Decreasing use of fossil fuels

C

LIFE19 CCM/BE/001215 co-funded by the European Commission

https://www.life-smart.eu/

LIFE19 CCM/BE/001215 co-funded by the European Commission

Life Smart project – 1st part

98 wt% coking coal

metallurgical coke

30-40 kton/year of waste plastics

to be used at AMB

Techno-Economic Assessment

Involves technical analysis

Emphasis on economic aspects

Assisting on decision-making

Gross Profit

[ˈgrōs ˈprä-fət]

The profit a company makes after deducting the costs associated with making and selling its products, or the costs associated with providing its services.

Investopedia

Scenarios and scope

GHENT UNIVERSITY

Mass-energy balance

Input			
Raw materials			
Coal (dry)	kg/t coke	1220 - 1350	
Energy			
BF gas + COG	MJ/t coke	3200 - 3900	
Electricity	MJ/t coke	20 - 230 (¹)	
Steam	MJ/t coke	60 - 800 (³)	
Compressed air	Nm ³ /t coke	1 – 15	
Oxygen	Nm ³ /t coke	0.0007	
Nitrogen (⁸)	Nm ³ /t coke	0.0047	
Acetylene	g/t	0.24	
Water			
Process water	m ³ /t colve	0.24 1.5	
$\binom{10}{}$	III / t COKE	0.24 - 1.3	
Quenching	m^{3}/t coke	0.5 1	
water (¹¹)	III / t COKe	0.5 - 1	

Data from "Best Available
Techniques (BAT) Reference
Document for Iron and Steel
Production"

https://dx.doi.org/10.2791/97469

Output					
Products					
Coke (dry)	kg/t	1000.0			
COG	Nm ³ /t coke	360 - 518			
NetCV of COG	kJ/Nm ³	17000 - 18000			
Energy	MJ	7200 - 9000			
Steam (²)	MJ/t coke	9 – 267/1500 (⁴)			
Air emissions (⁵)					
Dust	g/t coke	15.7 - 298 (¹)			
SO _X (⁶)	g/t coke	80 - 900 (2820) (⁷)			
NO _X	g/t coke	336 - 1783 (¹)			
NH ₃	g/t coke	0.5 - 24.7			
H ₂ SO ₄	g/t coke	2 (%)			
HCN	g/t coke	0.05 - 1.87			
H_2S	g/t coke	12 - 100 (¹)			
CO	g/t coke	200 - 4460 (¹)			
CO ₂	kg/t coke	$160 - 860 (^{12})$			
CH ₄	g/t coke	1 - 80 (¹³)			
TOC	g/t coke	12 - 24 (²)			
Benzene	g/t coke	$0.1(^{14}) - 45$			
PAH (¹⁵)	mg/t coke	115 - 1091 (¹⁶)			
PCDD/F	ng I-TEQ/Nm ³	< 0.1 (17)			
Production residues (waste/ by-products)					
Benzene	kg/t coke	5.3 - 14			
Light oil (BTX)	kg/t coke	9.1 - 14			
$H_2SO_4(^9)$	kg/t coke	4.2 – 9			
Tar	kg/t coke	26 - 48			
$(NH_4)_2SO_4$ as $SO_4^{2-}(^{18})$	kg/t coke	28 - 48			
Sulphur (¹⁹)	kg/t coke	0.9 - 2			
Sodium phenolate	kg/t coke	1.4			
Waste water	m ³ /t coke	0.1 - 0.5			

	Coal blend	AlterCoal
	conversion	conversion
Coke	77.8%	28.9%
Coke breeze	3.2%	0.5%
Tar	2.9%	21.4%
ВТХ	0.9%	3.7%
Sulphur	0.1%	0.0%
COG	14.1%	45.3%

Plant dimensions

High-Capacity Coke Oven Batteries

Comparison for 2 Million Tons of Coke Per Year

Oven height	7.6 m	6.0 m	4.3 m
Number of batteries	2	4	5
Number of ovens	140	220	325
Oven width	590 mm	450 mm	450 mm
Useful volume p. oven	76 m ³	34 m³	20 m³
Numb. of pushes/charges p. day	135	300	520
Total length of sealings (doors, standpipes, charging holes)	4.8 km	6.0 km	6.5 km
Required space for the batteries	40,000 m ²	50,000 m ²	55,000 m ²
Sets of oven machines	2	3	5
Operation teams	1	2	3
Advantages of large ovens:			

intages of large overis

- Reduced number of batteries / ovens
- Reduced number of pushes/charges
- Reduced length of sealings

- less emissions less emissions
- Reduced plant space requirement
- Reduced number of oven machines (and coal towers, guench systems, coke wharves)
- Reduced number of manpower

Coal blend bulk density = 793 kg/m³

Coal blend humidity = 10%

Useful volume: 3 416 000 m³/year

Benchmark scenario

Coal input: 2 709 kton/year

Coke output: 1 917 kton/year

AlterCoal scenario

Coal input: 2 619 kton/year

SRF input: 48.6 kton/year

Coke output: 1 868 kton/year

Energy market EU 2019-2023

https://businessanalytiq.com/procurementanalytics/index/coking-coal-price-index/ https://www.steelonthenet.com/files/blast-furnace-coke.html https://ec.europa.eu/eurostat/statisticsexplained/images/2/24/F6Development of natural gas prices for non-household consumers.png https://ec.europa.eu/eurostat/databrowser/view/nrg pc 205 custom 11990994/default/table?lang=en https://businessanalytiq.com/procurementanalytics/index/benzene-price-index/

Current and future market conditions

https://www.enerdata.net/publications/executive-briefing/carbon-price-projections-eu-ets.html https://www.spglobal.com/ratings/en/research/articles/230622-europe-s-utilities-face-a-power-pricecliff-from-2026-12767724#:~:text=A%20fall%20of%20that%20magnitude,(see%20Italy%20section%20below) https://www.oxfordenergy.org/wpcms/wp-content/uploads/2023/07/NG-184-A-New-Global-Gas-Order-Part-1.pdf https://enerknol.com/u-s-metallurgical-coal-prices-at-a-price-premium-compared-to-u-s-coal-eia/ https://www.barchart.com/futures/quotes/U7M24/interactive-chart https://www.industry.gov.au/sites/default/files/2024-03/resources-and-energy-quarterly-march-2024.pdf

GHENT

UNIVERSITY

https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en; https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/ets2-buildings-roadtransport-and-additional-sectors_en#monitoring-and-reporting-regulation-guidance-and-templates; https://www.enerdata.net/publications/executive-briefing/carbon-price-forecast-under-euets.pdf https://www.enerdata.net/publications/executive-briefing/carbon-price-projections-eu-ets.html

E

Cost forecast of ETS allowances from 2030

https://www.enerdata.net/publications/executive-briefing/carbon-price-projections-eu-ets.html

Results direct emissions

Direct emissions (tonCO ₂ /year)				
Source of emissions	Benchmark Scenario	AlterCoal Scenario	Net difference (ton)	Relative difference
COG combustion for heating	245 691	245 732	41	0.0%
Steam production	44 317	45 270	953	2.2%
Biogenic carbon	0	-33 482	-33 482	-
Total	290 009	257 520	-32 488	-11.2%

Results indirect emissions

Indirect emissions (tonCO ₂ /year)				
Source of emissions	Benchmark Scenario	AlterCoal Scenario	Net difference (ton)	Relative difference
Coal (mining, transport, and grinding)	1 844 564	1 783 787	-60 777	-3.3%
Electricity from coke-making process	144 292	148 144	3 852	2.67%
AlterCoal (SW transport, production, and transport to steelplant)	0	2 506	2 506	-
Incineration (SW transport, emissions, and electricity generation)	95 745	0	62 263	-
Biogenic carbon	-33 482	0	0	0.0%
Total	2 051 119	1 934 438	-116 682	-5.7%

Conclusions

- Gross profit of the AlterCoal Scenario was higher than that of the Benchmark Scenario in the three years analysed.
- The forthcoming EU ETS regulations, which will include the maritime transport sector starting in 2024, are expected to significantly impact coke-making costs in the EU, likely encouraging the industry to adopt more sustainable maritime transportation methods, such as biofuels or hybrid cargo ships, to maintain profitability.
- Direct emissions are reduced in 11.2% and indirect emissions are reduced in 5.7% in the AlterCoal Scenario

<u>SESSION 2: 9:30-9:50</u>

ESTEP workshop SecCarb4Steel

Preparation and use of biogenic and non-biogenic secondary carbon carriers (SCC) in processes for iron and steelmaking

A techno-economic and environmental assessment of coke-making with non-recyclable waste plastics in Europe: Evaluation of current and future market conditions

Mario Ávila¹, Inge Bellemans¹, Sofie Verbrugge², Kim Verbeken¹

¹ Department of Materials, Textiles and Chemical Engineering, Research Group Sustainable Materials Science, Ghent University, Technologiepark 46, 9052 Ghent, Belgium
² IDLab – UGent/imec, Technologiepark 126, 9052 Ghent, Belgium

ESTEP · Av. de Cortenbergh, 172 · B-1000 Brussels · Tel. +32 2 738 79 43 · secretariat@steelresearch-estep.eu · Disclaimer