SESSION 3: 10:30-10:45

ESTEP workshop SecCarb4Steel

Preparation and use of biogenic and non-biogenic secondary carbon carriers (SCC) in processes for iron and steelmaking

Biomass for **co**kemaking **de**carbonization. Objectives and first project results

Alessandro Vecchio¹

¹ Acciaierie d'Italia

ESTEP · Av. de Cortenbergh, 172 · B-1000 Brussels · Tel. +32 2 738 79 43 · secretariat@steelresearch-estep.eu · Disclaimer

Introduction to «BioCoDe» project

The steel industry belongs to the 'hard to abate' industrial sector. Its high CO₂ emissions and limited technological options for decarbonization represent a significant challenge in the transition to a low-carbon economy.

The **BioCoDe project**, funded by the **RFCS**, aims **to reduce CO₂ emissions** from integrated steel production.

The project **seeks to validate**, for the first time on **an industrial scale (TRL** 7), the introduction of up to **10 % biomass (or biochar) into the fossil mix** in metallurgical coke ovens. This approach not only contributes to the environmental sustainability of coke making process but also promotes local economic and social development.

Project number: 101112264 Call: RFCS-2022

Project starting date: 1 July 2023 Project duration: 42 months

Fig. 2 – Schematic representation of the experimentation plan for biomass use in coking blend

The project includes 4 principal phases:

- selection and characterization of the biomass/biochar to be tested
- lab scale test campaign;
- pilot-scale test campaign in a 10 kg, 60 kg, and 300 kg coke oven.
- industrial-scale phase in which the best solutions will be tested.

The project involves several international partners from the sector.

First step: biomass characterization

With its porous structure and high mechanical strength, Coke is essential in integrated steelmaking as a reducing agent and fuel in blast furnaces. It is produced by pyrolyzing coking coal in ovens at 1000 - 1200 °C, without oxygen.

To reduce the coke production process's carbon footprint, in BioCooDe, the most available biomass in the Taranto steel plant area (ADI) was selected and characterized. These include 9 types of biomass, 3 of which derive from wood waste (pallets, fruit boxes), 5 from agro-forestry residues, and 1 (pomace olives) from transformation processes.

- The biomass, except olive pomace, was chipped and then finely ground for analysis.
- A coal blend was used as a reference for the characterization.

Fig. 3 – (a) Pallet; (b) Pine; (c) Olive branches; (d) Olive trunks; (e) Boxes with plywood bottom; (f) Boxes with chipboard bottom; (g) Olive pomace; (h) Vine; (i) Straw

Reference Standard

First step: biomass characterization

for biomasses selection

		Sulfur	ASTM D4239 -18e1		
	Elemental analysis	Carbon	ASTM D5373 -21		
		Hydrogen	UNI EN ISO 21663:2021		
		Oxygen	Calculated		
		Nitrogen	UNI EN ISO 21663:2021		
		Chlorine	UNI EN 15408:2011 + UNI EN ISO 10304- 1:2009		
	Immediate Analysis	Moisture, Ash, Volatile Matter, Fixed Carbon	ASTM D7582-15		
		Bulk Determination of Ash Content	Internal method derived from ISO 1171:2010		
	Buik Analysis	Bulk Determination of Moisture	Internal method derived from ISO 589:2008		
	Ash chemistry	Ash Chemistry	ASTM D4326-13		
		Sulfur Oxide	ASTM D5016-16		
	Calorific Value		ASTM D5865/D5865M -19		
	Technological	Plasticity - Gieseler Plastometer	ASTM D2639/D2639M -22		
	tests	Dilation - Audibert Amu Dilatometer	ISO 349:2020		

Table 1 – Biomass characterization

	Limits	Pallet	Pine logs	Olive twigs	Olive tree trunks	Wooden crates	Particle board crates	Olive pomace	Vine shoots	Straw	Coal blend
Ash (wt%)	<8%	0.3	0.8	3.7	3	1.2	4.8	3.1	2.7	9.1	8.7
S (wt%)	<0.7%	0.04	0.03	0.07	0.14	0.07	0.04	0.06	0.08	0.13	0.66
P (wt%)	<0.015%	0.003	0.008	0.072	0.011	0.010	0.023	0.097	0.157	0.085	0.0012
Alkali (wt%)	-	0.019	0.056	0.424	0.223	0.082	0.358	0.963	0.233	1.457	0.0015
HHV (MJ/kg)	-	18.8	19.7	20.5	19.7	19.3	19.3	19.7	18.8	17.6	32.3
Fixed Carbon (wt%)	-	18.7	33.4	18.4	24.8	20.8	21.2	15.3	20	18.8	63.8
Moisture (wt%)	-	9.9	28	33.6	15.5	12.2	11.8	56.1	41.3	12.2	7.1

Fig. 5 – Biomass ashes

First step: biomass characterization

- 1. Biomass can replace fossil coals in coke production but reduces the yield due to its higher moisture content and lower fixed carbon
- 2. High O/C and H/C ratios imply lower biomass reactivity and lower calorific value
- 3. Biomass has a lower ash content than fossil blends, but a higher volatile matter content
- 4. Biomasses contain **significant amounts of alkalis** (Na₂O and K₂O), **low sulfur** content, and, in some cases, **higher levels of phosphorus** than fossil mixtures, which are undesirable in cast iron
- 5. According to the selected decision framework, **only four of the nine biomasses** (pallets, pine, olive logs, wooden boxes) **are suitable for use**
- 6. In general, the use of raw biomass leads to a reduction in process yield. Therefore, thermal pre-treatments on biomass, such as torrefaction or carbonization, are necessary

Three types of biochar were selected from three different suppliers, all derived from the same biomass, namely virgin wood of forest origin

Product	Treatment	Temperature	Time	
A	Pyrolysis	480°C	50 minutes	
D	1st stage: pyrolysis	380°C	30 minutes	
D	2nd stage: gasification	1000°C	Few minutes	
C	Pyrolysis	600°C	60 minutes	

Table 3 – Biochar production characteristics

Daramatara	Values	Unit of		
Parameters	values	measurement		
Density	0.58	g/cm ³ DM		
Moisture	40.72	%		
Ash	13.66	%		
Cl	0.02	% DM		
S	0.056	% DM		
Higher heating value	13.39	MJ/kg DM		
Lower heating value	12.23	MJ/kg DM		
Н	0.79	%		
N	0.36	%		
С	45.52	%		
Volatile matters	55.9	%		
Fixed carbon	20.86	% DM		
0	<5	% DM		
Cd	<0.06	mg/kg DM		
Hg	<0.1	mg/kg DM		
Ph	92	mg/kg DM		

 Table 4 - Analysis of product A

Daramators	Values	Unit of		
Parameters	values	measurement		
Density	0.36	g/cm ³ DM		
Moisture	15.05	%		
Ash	9.46	%		
Cl	0.018	% DM		
S	0.051	% DM		
Higher heating value	21.66	MJ/kg DM		
Lower heating value	21.02	MJ/kg DM		
Н	1.30	%		
N	0.54	%		
С	64.29	%		
Volatile matters	30.9	%		
Fixed carbon	34.77	% DM		
0	10.97	% DM		
Cd	<0.06	mg/kg DM		
Hg	<0.1	mg/kg DM		
Ph	1 2	mg/kg DM		

Table 5 - Analysis of product B

Daramotors	Values	Unit of		
Farameters	values	measurement		
Density	0.51	g/cm ³ DM		
Moisture	35.33	%		
Ash	3.34	%		
Cl	0.017	% DM		
S	0.133	% DM		
Higher heating value	19.43	MJ/kg DM		
Lower heating value	18.28	MJ/kg DM		
Н	1.41	%		
N	0.32	%		
С	52.98	%		
Volatile matters	44.6	%		
Fixed carbon	33.33	% DM		
0	10.10	% DM		
Cd	<0.06	mg/kg DM		
Hg	< 0.1	mg/kg DM		
Pb	2.9	mg/kg DM		

 Table 6 - Analysis of product C

- **1. Biochar B** stands out due to its **high higher heating value (21.66 MJ/kg)** and lower heating value (21.02 MJ/kg), making it the **most energy-efficient among the three**
- 2. Biochar B has also the lowest volatile matter content that is preferred in coke production to achieve more stable and predictable combustion
- In terms of chemical composition, Biochar B has the highest fixed carbon content (34.77%) that is desirable in coke production for producing high-quality coke
- **4. Biochar C has significantly lower ash content (3.34%)** that indicates cleaner combustion and fewer solid residues
- 5. From an environmental sustainability perspective, **Biochar B has the lowest lead levels** (1.2 mg/kg). The presence of heavy metals such as lead is a critical factor for the environmental impact and safety of the final product

Biochar	T _{i,loss} [°C]	T _{f,loss} [°C]	Initial weight [g]	Final weight [g]	Weight loss [g]	Percentage loss [%]
Α	65	958	2.308	1.102	1.206	47.75
В	65	877	2.99	1.020	1.97	34.12
C	61	977	2.042	1.160	0.882	56.8

Table 7 – Thermogravimetric analysis

Thermogravimetric analyses indicate the **thermal stability and degradation behavior of each biochar**

Biochar B, with its dual-stage treatment (pyrolysis followed by gasification), **shows greater resistance to thermal decomposition**, making it **particularly suitable** for high-temperature applications typical in coke production

Conclusions

- Using untreated biomass instead of hard coal can reduce the efficiency of coking, so thermal pre-treatment such as torrefaction or carbonization is required.
- The situation greatly improves with biochar, which has proven to be much more suitable for the goal of the project

Next steps...

Obtaining and characterization of biochar from selected biomass

Pilot test campaign on an increasing scale before final use in the coke-making cells at the Taranto steel plan

ESTEP workshop SecCarb4Steel

Preparation and use of biogenic and non-biogenic secondary carbon carriers (SCC) in processes for iron and steelmaking

Thanks for the attention!

ESTEP · Av. de Cortenbergh, 172 · B-1000 Brussels · Tel. +32 2 738 79 43 · secretariat@steelresearch-estep.eu · Disclaimer