SESSION 3: 10:45-11:00

ESTEP workshop SecCarb4Steel

Preparation and use of biogenic and non-biogenic secondary carbon carriers (SCC) in processes for iron and steelmaking

Hard-to-abate? Our solution for the EAF route within the BioRECAST project

Viviana Negro¹, Alessio Riorda¹, Andrea Salimbeni², David Chiaramonti^{1,2}

¹ Department of Energy, <u>Politecnico</u> di Torino, Corso Duca <u>degli</u> Abruzzi, 24, Torino, 10129, Italy ² RE-CORD (Renewable Energy Consortium for R&D), Viale J. F. Kennedy, <u>Scarperia</u> e San Piero, Firenze, 50038, Italy

ESTEP · Av. de Cortenbergh, 172 · B-1000 Brussels · Tel. +32 2 738 79 43 · secretariat@steelresearch-estep.eu · Disclaimer

Steelmaking sector

State of the art

Steelmaking sector

Europe Outlook

EU27 crude steel production in 2023 (1)

in million tons

EU27 crude steel production in 2023 (1)

(1) https://www.eurofer.eu/assets/publications/brochures-booklets-and-factsheets/european-steel-in-figures-2024/EUROFER-2024-Version-June14.pdf

Project overview

- Project name: BIO-based Residues Conversion to Advanced fuels for sustainable STeel production
- Project acronym: BIORECAST
- **Project coordinator**: Politecnico di Torino
- **Call**: RFCS-2022
- **42-month project**, KoM in November 2023
- **2.362.962,00 €** European funding

Project partners

27.11.2024

BioRECAST Project framework

Main objective: foster the consumption of biowaste streams as renewable carbon and energy source for steel sector and, at the same time, to valorize the waste heat of EAF steelmaking.

BioRECAST Project framework

Urban biowaste Organic fraction MSW

Green waste

Industrial sludge Pulper sludge Food waste sludge

Sewage sludge Digested sludge Aerobic stabilized

Agricultural residues Lignocellulosic residues Digestate

9

Objectives	Description
Production of high quality biocoal from waste	Optimization of thermo-chemical treatment plant with char chemical upgrading
Validate biocoal quality in industrial scale furnaces	Test and assess the biocoal applicability in Electric Arc Furnaces
Enable the utilization of pyrogas as bioenergy source for EAF steelmaking	Identification of most efficient and sustainable solution for slow pyrolysis pyrogas utilisation in EAF steelmaking site
Maximize the reuse of EAF waste heat for pyrolysis process	Development of effective heat exchanging system to reuse EAF waste heat for
Demonstrate economic and environmental benefits of the Pyro-EAF process	Evaluate the economic and environmental feasibility of the BioRECAST proposed solution for steel sector application,

BioRECAST Conclusions

- The production of bio-coal from bio-waste could be a key player in the green transition of steel-making processes.
- Besides the environmental benefits of the solution, from an economic standpoint, this could be a game-changer. It opens up the possibility of benefiting from credits associated with reduced CO_2 emissions in a sector covered by ETS.
- Further analysis will be conducted in the coming years to determine the optimal integrated solution.

Thank you!

Bio RECAST

Viviana Negro, David Chiaramonti Politecnico di Torino

viviana.negro@polito.it david.chiaramonti@polito.it

Partners

This project has received funding from the European Union's funding programme The Research Fund for Coal and Steel under grant agreement No 101112601. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.