SMART STEEL PIPE PRODUCTION PLANT via COGNITIVE DIGITAL TWINS: A CASE STUDY on DIGITALIZATION OF SWP

Presenter: Özlem ALBAYRAK
22 October 2020
Authors

Perin ÜNAL PhD.

Özlem ALBAYRAK PhD.

R&D Performing SME

Research and Commercial Collaborations
The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
Outline

• Abstract- Introduction
• Smart Steel Pipe Production
• The COGNITWIN Project
• Cognitive Digital Twin
• A Case Study on Digitalization of SWP: NOKSEL Case
 • Target Goals
 • Work Performed
 • Future Work
• References
Introduction

• There are many Artificial Intelligence (AI) applications for real manufacturing plants.

• Digital twins with AI abilities are among these applications.

• Steel is an important sector, where AI applications have vast potential to provide positive impacts on different aspects, including energy consumption and cost benefits.

• This study briefs the COGNITWIN project’s NOKSEL pilot’s purpose, scope, state and the results gained in the 1st year.

Smart Steel Pipe Production Plant via Cognitive Digital Twins: A Case Study on Digitalization of SWP

Abstract
Smart Steel Pipe Production

- In steel pipe production, operations run on 7/24 basis
- Production process is serial and multi-step
- If a production step stops, the entire production stops
- **Problem:** The cost of machine breakdown is very high
- **Proposed Solution:** Development of Cognitive Digital Twin for production of Spiral Welded Steel pipes
- **Case:** NOKSEL İskenderun, COGNITWIN Steel Pilot

The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
The COGNITWIN Project
Cognitive Plants Through Proactive Self-Learning Hybrid Digital Twins

The project aims at adding the cognitive elements to the existing process control systems, enabling their capability to self-organise and offer solutions to unpredicted behaviours.

COGNITWIN will bring the industrial partners to a new level of Industry 4.0-driven operation by bringing in new data sources, integration of new and existing data, applying machine learning techniques to generate hybrid, self-learning and proactive systems, as parts of their digital transformation journey to cognitive plants.

The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
Cognitive Digital Twin

The Cognitive Twin (CT) in which asset will autonomously begin to detect changes in the process and will know how to respond in real-time to the constantly changing scenario with minimal human intervention will be developed. The CT will have cognitive capabilities by using operational real-time data to enable understanding, self-learning, reasoning and making decisions.

The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
Cognitive Digital Twin
Digitalization of SWP: NOKSEL Case

A digital twin on NOKSEL’s production process of Spiral Welded Steel Pipes (SWP) collects, integrates and analyzes multiple sensors’ data streams in real-time, and enables predictive maintenance by a smart condition monitoring system.

The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
NOKSEL Case

Target Goals

Work Performed

Future Work
NOKSEL Case: Target Goals

- Real time condition monitoring
- Predictive maintenance

- Target KPIs
 - 10% reduction in energy consumption, and
 - 10% reduction in shifted average duration of downtimes.

The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
NOKSEL Case: Work Performed

- System Architecture was created
- Sensors selections are completed
- Sensor implementations were completed
- Online stream data collected and processed realtime
- 3D models of SWP parts were prepared
- Digital twin visualisations were designed and implemented

- Physical Model was created
- Data driven digital twin was created
- Synthetic data were created

The COGNITWIN project has received funding from the European Union’s Horizon 2020 research and innovation programme under GA No.870130.
NOKSEL Case: Future Work

- Hybrid digital twin studies are in progress
- Cognitive digital twin studies are in progress
- Machine Learning API for predictive maintenance, TeknoparTMML was enhanced by new models
- A new software for ML/DL testing has been designed
References

Thank You

Perin ÜNAL: punal@teknopar.com.tr

Özlem ALBAYRAK: albayrak@teknopar.com.tr